1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! Utility functions for operating on [`Key`].
//!
//! Although built for FDB tuple layer, some functions may be useful
//! otherwise.
// In Java, this is `ByteArrayUtil` class.

use bytes::{BufMut, Bytes, BytesMut};

use std::convert::TryFrom;

use crate::error::{FdbError, FdbResult, TUPLE_KEY_UTIL_STRINC_ERROR};
use crate::Key;

/// Computes the key that would sort immediately after `key`.
pub fn key_after(key: impl Into<Key>) -> Key {
    let mut res = BytesMut::new();
    res.put(Bytes::from(key.into()));
    res.put_u8(0x00);
    Bytes::from(res).into()
}

/// Checks if `key` starts with `prefix`.
pub fn starts_with(key: impl Into<Key>, prefix: impl Into<Key>) -> bool {
    let key = Bytes::from(key.into());
    let prefix = Bytes::from(prefix.into());

    // Check to make sure `key` is atleast as long as
    // `prefix`. Otherwise the slice operator will panic.
    if key.len() < prefix.len() {
        false
    } else {
        prefix[..] == key[..prefix.len()]
    }
}

/// Computes the first key that would sort outside the range prefixed
/// by `prefix`.
///
/// The `prefix` must not be empty or contain only `0xFF` bytes. That
/// is `prefix` must contain at least one byte not equal to `0xFF`.
///
/// This resulting [`Key`] serves as the exclusive upper-bound for
/// all keys prefixed by the argument `prefix`. In other words, it is
/// the first key for which the argument `prefix` is not a prefix.
pub fn strinc(prefix: impl Into<Key>) -> FdbResult<Key> {
    rstrip_xff(Bytes::from(prefix.into())).map(|x| {
        let mut res = BytesMut::new();

        // Ok to subtract because in the worst case the range will
        // be 0..0
        let non_ff_byte_index = x.len() - 1;

        res.put(&x[0..non_ff_byte_index]);
        res.put_u8(x[non_ff_byte_index] + 1);

        Bytes::from(res).into()
    })
}

// Custom function to strip `\xFF` from the right of a byte string.
fn rstrip_xff(input: Bytes) -> FdbResult<Bytes> {
    if input.is_empty() {
        Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
    } else {
        // Safety: FDB key size cannot exceed 10,000 bytes in
        // size. So, this is well within isize::max.
        let mut i = isize::try_from(input.len() - 1).unwrap();

        while i >= 0 {
            // Safety: Safe to unwrap as we are converting from a
            // usize and also checking that `i >= 0` above.
            if input[usize::try_from(i).unwrap()] != 0xFF {
                break;
            }
            i -= 1;
        }

        if i < 0 {
            Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
        } else {
            // Safety: We are checking above to make sure `i` is not
            // negative.
            Ok(input.slice(0..usize::try_from(i + 1).unwrap()))
        }
    }
}

#[cfg(test)]
mod tests {
    use bytes::Bytes;

    use crate::error::{FdbError, TUPLE_KEY_UTIL_STRINC_ERROR};
    use crate::Key;

    use super::{key_after, rstrip_xff, starts_with, strinc};

    // *Note:* We prefix with `test_` here because we do not want to
    //         conflict with similarly named function above.

    #[test]
    fn test_key_after() {
        assert_eq!(
            key_after(Bytes::new()),
            Key::from(Bytes::from_static(b"\x00"))
        );
        assert_eq!(
            key_after(Bytes::from_static(b"hello_world")),
            Key::from(Bytes::from_static(b"hello_world\x00")),
        );
    }

    #[test]
    fn test_starts_with() {
        // length mismatch
        assert!(!starts_with(
            Bytes::from_static(b"p"),
            Bytes::from_static(b"prefix")
        ));

        assert!(!starts_with(
            Bytes::from_static(b"wrong_prefix"),
            Bytes::from_static(b"prefix")
        ));

        assert!(starts_with(
            Bytes::from_static(b"prefix_plus_something_else"),
            Bytes::from_static(b"prefix")
        ));
    }

    #[test]
    fn test_rstrip_xff() {
        assert_eq!(
            rstrip_xff(Bytes::new()),
            Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
        );

        assert_eq!(
            rstrip_xff(Bytes::from_static(b"\xFF")),
            Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
        );

        assert_eq!(
            rstrip_xff(Bytes::from_static(b"\xFF\xFF")),
            Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
        );
        assert_eq!(
            rstrip_xff(Bytes::from_static(b"\x00")),
            Ok(Bytes::from_static(b"\x00"))
        );
        assert_eq!(
            rstrip_xff(Bytes::from_static(b"\xFE")),
            Ok(Bytes::from_static(b"\xFE"))
        );
        assert_eq!(
            rstrip_xff(Bytes::from_static(b"a\xFF")),
            Ok(Bytes::from_static(b"a"))
        );
        assert_eq!(
            rstrip_xff(Bytes::from_static(b"hello1")),
            Ok(Bytes::from_static(b"hello1"))
        );
        assert_eq!(
            rstrip_xff(Bytes::from_static(b"hello1\xFF")),
            Ok(Bytes::from_static(b"hello1"))
        );
        assert_eq!(
            rstrip_xff(Bytes::from_static(b"hello1\xFF\xFF")),
            Ok(Bytes::from_static(b"hello1"))
        );
    }

    #[test]
    fn test_strinc() {
        assert_eq!(
            strinc(Bytes::new()),
            Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"\xFF")),
            Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"\xFF\xFF")),
            Err(FdbError::new(TUPLE_KEY_UTIL_STRINC_ERROR))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"\x00")),
            Ok(Key::from(Bytes::from_static(b"\x01")))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"\xFE")),
            Ok(Key::from(Bytes::from_static(b"\xFF")))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"a\xFF")),
            Ok(Key::from(Bytes::from_static(b"b")))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"hello1")),
            Ok(Key::from(Bytes::from_static(b"hello2")))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"hello1\xFF")),
            Ok(Key::from(Bytes::from_static(b"hello2")))
        );
        assert_eq!(
            strinc(Bytes::from_static(b"hello1\xFF\xFF")),
            Ok(Key::from(Bytes::from_static(b"hello2")))
        );
    }
}