1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
use std::mem;

use crate::data_source::IonDataSource;
use crate::result::{decoding_error, IonResult};
use crate::types;
use crate::types::{Coefficient, Int};
use num_bigint::{BigInt, Sign};
use num_traits::Zero;
use std::io::Write;

type IntStorage = i64;
const INT_NEGATIVE_ZERO: u8 = 0x80;

// This limit is used for stack-allocating buffer space to encode/decode Ints.
const INT_STACK_BUFFER_SIZE: usize = 16;
// This number was chosen somewhat arbitrarily and could be lifted if a use case demands it.
const MAX_INT_SIZE_IN_BYTES: usize = 2048;

/// Represents a fixed-length signed integer. See the
/// [UInt and Int Fields](https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields)
/// section of the binary Ion spec for more details.
#[derive(Debug)]
pub struct DecodedInt {
    size_in_bytes: usize,
    value: Int,
    // [Integer] is not capable of natively representing negative zero. We track the sign
    // of the value separately so we can distinguish between 0 and -0.
    is_negative: bool,
}

impl DecodedInt {
    pub(crate) fn new(value: Int, is_negative: bool, size_in_bytes: usize) -> Self {
        DecodedInt {
            size_in_bytes,
            value,
            is_negative,
        }
    }

    /// Reads an Int with `length` bytes from the provided data source.
    pub fn read<R: IonDataSource>(data_source: &mut R, length: usize) -> IonResult<DecodedInt> {
        if length == 0 {
            return Ok(DecodedInt {
                size_in_bytes: 0,
                value: Int::I64(0),
                is_negative: false,
            });
        } else if length > MAX_INT_SIZE_IN_BYTES {
            return decoding_error(format!(
                "Found a {length}-byte Int. Max supported size is {MAX_INT_SIZE_IN_BYTES} bytes."
            ));
        }

        if length <= INT_STACK_BUFFER_SIZE {
            let buffer = &mut [0u8; INT_STACK_BUFFER_SIZE];
            DecodedInt::read_using_buffer(data_source, length, buffer)
        } else {
            // We're reading an enormous int. Heap-allocate a Vec to use as storage.
            let mut buffer = vec![0u8; length];
            DecodedInt::read_using_buffer(data_source, length, buffer.as_mut_slice())
        }
    }

    pub fn read_using_buffer<R: IonDataSource>(
        data_source: &mut R,
        length: usize,
        buffer: &mut [u8],
    ) -> IonResult<DecodedInt> {
        // Get a mutable reference to a portion of the buffer just big enough to fit
        // the requested number of bytes.
        let buffer = &mut buffer[0..length];

        data_source.read_exact(buffer)?;
        let mut byte_iter = buffer.iter();
        let mut is_negative: bool = false;

        let value = if length <= mem::size_of::<i64>() {
            // This Int will fit in an i64.
            let first_byte: i64 = i64::from(byte_iter.next().copied().unwrap());
            let sign: i64 = if first_byte & 0b1000_0000 == 0 {
                1
            } else {
                is_negative = true;
                -1
            };
            let mut magnitude: i64 = first_byte & 0b0111_1111;
            for &byte in byte_iter {
                let byte = i64::from(byte);
                magnitude <<= 8;
                magnitude |= byte;
            }
            Int::I64(sign * magnitude)
        } else {
            // This Int is too big for an i64, we'll need to use a BigInt
            let sign: num_bigint::Sign = if buffer[0] & 0b1000_0000 == 0 {
                Sign::Plus
            } else {
                is_negative = true;
                Sign::Minus
            };
            // We're going to treat the buffer's contents like the big-endian bytes of an
            // unsigned integer. Now that we've made a note of the sign, set the sign bit
            // in the buffer to zero.
            buffer[0] &= 0b0111_1111;
            let value = BigInt::from_bytes_be(sign, buffer);
            Int::BigInt(value)
        };

        Ok(DecodedInt {
            size_in_bytes: length,
            value,
            is_negative,
        })
    }

    /// Encodes the provided `value` as an Int and writes it to the provided `sink`.
    /// Returns the number of bytes written.
    pub fn write_i64<W: Write>(sink: &mut W, value: i64) -> IonResult<usize> {
        let magnitude = value.unsigned_abs();
        // Using leading_zeros() to determine how many empty bytes we can ignore.
        // We subtract one from the number of leading bits to leave space for a sign bit
        // and divide by 8 to get the number of bytes.
        let empty_leading_bytes: u32 = (magnitude.leading_zeros() - 1) >> 3;
        let first_occupied_byte = empty_leading_bytes as usize;

        let mut magnitude_bytes: [u8; mem::size_of::<u64>()] = magnitude.to_be_bytes();
        let bytes_to_write: &mut [u8] = &mut magnitude_bytes[first_occupied_byte..];
        if value < 0 {
            bytes_to_write[0] |= 0b1000_0000;
        }

        sink.write_all(bytes_to_write)?;
        Ok(bytes_to_write.len())
    }

    /// Encodes a negative zero as an `Int` and writes it to the privided `sink`.
    /// Returns the number of bytes written.
    ///
    /// This method is similar to [Self::write_i64]. However, because an i64 cannot represent a negative
    /// zero, a separate method is required.
    pub fn write_negative_zero<W: Write>(sink: &mut W) -> IonResult<usize> {
        sink.write_all(&[INT_NEGATIVE_ZERO])?;
        Ok(1)
    }

    /// Returns `true` if the Int is negative zero.
    pub fn is_negative_zero(&self) -> bool {
        // `self.value` can natively represent any negative integer _except_ -0.
        // To check for negative zero, we need to also look at the sign bit that was encoded
        // in the stream.
        self.value.is_zero() && self.is_negative
    }

    /// Returns the value of the signed integer.
    #[inline(always)]
    pub fn value(&self) -> &Int {
        &self.value
    }

    /// Returns the number of bytes that were read from the data source to construct this
    /// signed integer.
    #[inline(always)]
    pub fn size_in_bytes(&self) -> usize {
        self.size_in_bytes
    }

    /// Constructs a DecodedInt that represents zero. This is useful when reading from a stream
    /// where a zero-length Int is found, meaning that it is implicitly positive zero.
    pub fn zero() -> Self {
        DecodedInt {
            size_in_bytes: 0,
            value: Int::I64(0),
            is_negative: false,
        }
    }
}

impl From<DecodedInt> for Int {
    /// Note that if the DecodedInt represents -0, converting it to an Integer will result in a 0.
    /// If negative zero is significant to your use case, check it using [DecodedInt::is_negative_zero]
    /// before converting it to an Integer.
    fn from(uint: DecodedInt) -> Self {
        let DecodedInt {
            value,
            .. // Ignore 'size_in_bytes' and 'is_negative'
        } = uint;
        value
    }
}

impl From<DecodedInt> for Coefficient {
    fn from(int: DecodedInt) -> Self {
        let DecodedInt {
            value,
            is_negative,
            .. // ignore `size_in_bytes`
        } = int;
        use types::Sign::{Negative, Positive};
        let sign = if is_negative { Negative } else { Positive };
        Coefficient::new(sign, value)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::result::IonResult;
    use crate::types::Int;
    use std::io;
    use std::io::Cursor;

    const READ_ERROR_MESSAGE: &str = "Failed to read an Int from the provided cursor.";

    #[test]
    fn test_read_three_byte_positive_int() {
        let data = &[0b0011_1100, 0b1000_0111, 0b1000_0001];
        let int = DecodedInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(int.size_in_bytes(), 3);
        assert_eq!(int.value(), &Int::I64(3_966_849));
    }

    #[test]
    fn test_read_three_byte_negative_int() {
        let data = &[0b1011_1100, 0b1000_0111, 0b1000_0001];
        let int = DecodedInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(int.size_in_bytes(), 3);
        assert_eq!(int.value(), &Int::I64(-3_966_849));
    }

    #[test]
    fn test_read_int_negative_zero() {
        let data = &[0b1000_0000]; // Negative zero
        let int = DecodedInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(int.size_in_bytes(), 1);
        assert_eq!(int.value(), &Int::I64(0));
        assert!(int.is_negative_zero());
    }

    #[test]
    fn test_read_int_positive_zero() {
        let data = &[0b0000_0000]; // Positive zero
        let int = DecodedInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(int.size_in_bytes(), 1);
        assert_eq!(int.value(), &Int::I64(0));
        assert!(!int.is_negative_zero());
    }

    #[test]
    fn test_read_two_byte_positive_int() {
        let data = &[0b0111_1111, 0b1111_1111];
        let int = DecodedInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(int.size_in_bytes(), 2);
        assert_eq!(int.value(), &Int::I64(32_767));
    }

    #[test]
    fn test_read_two_byte_negative_int() {
        let data = &[0b1111_1111, 0b1111_1111];
        let int = DecodedInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(int.size_in_bytes(), 2);
        assert_eq!(int.value(), &Int::I64(-32_767));
    }

    #[test]
    fn test_read_int_length_zero() {
        let data = &[];
        let int = DecodedInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(int.size_in_bytes(), 0);
        assert_eq!(int.value(), &Int::I64(0));
    }

    #[test]
    fn test_read_int_overflow() {
        // A Vec of bytes that's one beyond the maximum allowable Int size. Each byte is a 1.
        let buffer = vec![1; MAX_INT_SIZE_IN_BYTES + 1];
        let data = buffer.as_slice();
        let _int = DecodedInt::read(&mut Cursor::new(data), data.len())
            .expect_err("This exceeded the configured max Int size.");
    }

    fn write_int_test(value: i64, expected_bytes: &[u8]) -> IonResult<()> {
        let mut buffer: Vec<u8> = vec![];
        DecodedInt::write_i64(&mut buffer, value)?;
        assert_eq!(buffer.as_slice(), expected_bytes);
        Ok(())
    }

    #[test]
    fn test_write_int_zero() -> IonResult<()> {
        write_int_test(0, &[0b0000_0000])
    }

    #[test]
    fn test_write_int_negative_zero() -> IonResult<()> {
        let mut buffer: Vec<u8> = vec![];
        DecodedInt::write_negative_zero(&mut buffer)?;
        assert_eq!(buffer.as_slice(), &[0b1000_0000]);
        Ok(())
    }

    #[test]
    fn test_write_int_single_byte_values() -> IonResult<()> {
        write_int_test(1, &[0b0000_0001])?;
        write_int_test(3, &[0b0000_0011])?;
        write_int_test(7, &[0b0000_0111])?;
        write_int_test(100, &[0b0110_0100])?;

        write_int_test(-1, &[0b1000_0001])?;
        write_int_test(-3, &[0b1000_0011])?;
        write_int_test(-7, &[0b1000_0111])?;
        write_int_test(-100, &[0b1110_0100])?;
        Ok(())
    }

    #[test]
    fn test_write_int_two_byte_values() -> IonResult<()> {
        write_int_test(201, &[0b0000_0000, 0b1100_1001])?;
        write_int_test(501, &[0b0000_0001, 0b1111_0101])?;
        write_int_test(16_000, &[0b0011_1110, 0b1000_0000])?;

        write_int_test(-201, &[0b1000_0000, 0b1100_1001])?;
        write_int_test(-501, &[0b1000_0001, 0b1111_0101])?;
        write_int_test(-16_000, &[0b1011_1110, 0b1000_0000])?;
        Ok(())
    }

    #[test]
    fn test_write_int_max_i64() -> IonResult<()> {
        let mut buffer: Vec<u8> = vec![];
        let length = DecodedInt::write_i64(&mut buffer, i64::MAX)?;
        let i = DecodedInt::read(&mut io::Cursor::new(buffer.as_slice()), length)?;
        assert_eq!(i.value, Int::I64(i64::MAX));
        Ok(())
    }
}