1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
use crate::binary::constants::v1_0::{length_codes, IVM};
use crate::binary::int::DecodedInt;
use crate::binary::non_blocking::type_descriptor::{
    Header, TypeDescriptor, ION_1_0_TYPE_DESCRIPTORS,
};
use crate::binary::uint::DecodedUInt;
use crate::binary::var_int::VarInt;
use crate::binary::var_uint::VarUInt;
use crate::result::{decoding_error, incomplete_data_error, incomplete_data_error_raw};
use crate::types::{Int, UInt};
use crate::{IonResult, IonType};
use num_bigint::{BigInt, BigUint, Sign};
use std::io::Read;
use std::mem;

// This limit is used for stack-allocating buffer space to encode/decode UInts.
const UINT_STACK_BUFFER_SIZE: usize = 16;
// This number was chosen somewhat arbitrarily and could be lifted if a use case demands it.
const MAX_UINT_SIZE_IN_BYTES: usize = 2048;

// This limit is used for stack-allocating buffer space to encode/decode Ints.
const INT_STACK_BUFFER_SIZE: usize = 16;
// This number was chosen somewhat arbitrarily and could be lifted if a use case demands it.
const MAX_INT_SIZE_IN_BYTES: usize = 2048;

/// A stack-allocated wrapper around an `AsRef<[u8]>` that provides methods to read Ion's
/// encoding primitives.
///
/// When the wrapped type is a `Vec<u8>`, data can be appended to the buffer between read
/// operations.
#[derive(Debug, PartialEq)]
pub(crate) struct BinaryBuffer<A: AsRef<[u8]>> {
    data: A,
    start: usize,
    end: usize,
    total_consumed: usize,
}

impl<A: AsRef<[u8]>> BinaryBuffer<A> {
    /// Constructs a new BinaryBuffer that wraps `data`.
    #[inline]
    pub fn new(data: A) -> BinaryBuffer<A> {
        let end = data.as_ref().len();
        BinaryBuffer {
            data,
            start: 0,
            end,
            total_consumed: 0,
        }
    }

    /// Creates an independent view of the `BinaryBuffer`'s data. The `BinaryBuffer` that is
    /// returned tracks its own position and consumption without affecting the original.
    pub fn slice(&self) -> BinaryBuffer<&A> {
        BinaryBuffer {
            data: &self.data,
            start: self.start,
            end: self.end,
            total_consumed: self.total_consumed,
        }
    }

    /// Returns a slice containing all of the buffer's remaining bytes.
    pub fn bytes(&self) -> &[u8] {
        &self.data.as_ref()[self.start..self.end]
    }

    /// Returns a slice containing all of the buffer's bytes. This includes all of the consumed
    /// bytes, and remaining unconsumed bytes.
    pub(crate) fn raw_bytes(&self) -> &[u8] {
        self.data.as_ref()
    }

    /// Gets a slice from the buffer starting at `offset` and ending at `offset + length`.
    /// The caller must check that the buffer contains `length + offset` bytes prior
    /// to calling this method.
    pub fn bytes_range(&self, offset: usize, length: usize) -> &[u8] {
        let from = self.start + offset;
        let to = from + length;
        &self.data.as_ref()[from..to]
    }

    /// Returns the number of bytes that have been marked as read either via the
    /// [`consume`](Self::consume) method or one of the `read_*` methods.
    pub fn total_consumed(&self) -> usize {
        self.total_consumed
    }

    /// Returns the number of unread bytes left in the buffer.
    pub fn remaining(&self) -> usize {
        self.end - self.start
    }

    /// Returns `true` if there are no bytes remaining in the buffer. Otherwise, returns `false`.
    pub fn is_empty(&self) -> bool {
        self.start == self.end
    }

    /// If the buffer is not empty, returns `Some(_)` containing the next byte in the buffer.
    /// Otherwise, returns `None`.
    pub fn peek_next_byte(&self) -> Option<u8> {
        self.data.as_ref().get(self.start).copied()
    }

    /// If there are at least `n` bytes left in the buffer, returns `Some(_)` containing a slice
    /// with the first `n` bytes. Otherwise, returns `None`.
    pub fn peek_n_bytes(&self, n: usize) -> Option<&[u8]> {
        self.data.as_ref().get(self.start..self.start + n)
    }

    /// Marks the first `num_bytes_to_consume` bytes in the buffer as having been read.
    ///
    /// After data has been inspected using the `peek` methods, those bytes can be marked as read
    /// by calling the `consume` method.
    ///
    /// Note that the various `read_*` methods to parse Ion encoding primitives automatically
    /// consume the bytes they read if they are successful.
    #[inline]
    pub fn consume(&mut self, num_bytes_to_consume: usize) {
        // This assertion is always run during testing but is removed in the release build.
        debug_assert!(num_bytes_to_consume <= self.remaining());
        self.start += num_bytes_to_consume;
        self.total_consumed += num_bytes_to_consume;
    }

    /// Reads (but does not consume) the first byte in the buffer and returns it as a
    /// [TypeDescriptor].
    pub fn peek_type_descriptor(&self) -> IonResult<TypeDescriptor> {
        if self.is_empty() {
            return incomplete_data_error("a type descriptor", self.total_consumed());
        }
        let next_byte = self.data.as_ref()[self.start];
        Ok(ION_1_0_TYPE_DESCRIPTORS[next_byte as usize])
    }

    /// Reads the first four bytes in the buffer as an Ion version marker. If it is successful,
    /// returns an `Ok(_)` containing a `(major, minor)` version tuple and consumes the
    /// source bytes.
    ///
    /// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#value-streams>
    pub fn read_ivm(&mut self) -> IonResult<(u8, u8)> {
        let bytes = self
            .peek_n_bytes(IVM.len())
            .ok_or_else(|| incomplete_data_error_raw("an IVM", self.total_consumed()))?;

        match bytes {
            [0xE0, major, minor, 0xEA] => {
                let version = (*major, *minor);
                self.consume(IVM.len());
                Ok(version)
            }
            invalid_ivm => decoding_error(format!("invalid IVM: {invalid_ivm:?}")),
        }
    }

    /// Reads a `VarUInt` encoding primitive from the beginning of the buffer. If it is successful,
    /// returns an `Ok(_)` containing its [VarUInt] representation and consumes the source bytes.
    ///
    /// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#varuint-and-varint-fields>
    pub fn read_var_uint(&mut self) -> IonResult<VarUInt> {
        const BITS_PER_ENCODED_BYTE: usize = 7;
        const STORAGE_SIZE_IN_BITS: usize = mem::size_of::<usize>() * 8;
        const MAX_ENCODED_SIZE_IN_BYTES: usize = STORAGE_SIZE_IN_BITS / BITS_PER_ENCODED_BYTE;

        const LOWER_7_BITMASK: u8 = 0b0111_1111;
        const HIGHEST_BIT_VALUE: u8 = 0b1000_0000;

        let mut magnitude: usize = 0;
        let mut encoded_size_in_bytes = 0;

        for byte in self.bytes().iter().copied() {
            encoded_size_in_bytes += 1;
            magnitude <<= 7; // Shifts 0 to 0 in the first iteration
            let lower_seven = (LOWER_7_BITMASK & byte) as usize;
            magnitude |= lower_seven;
            if byte >= HIGHEST_BIT_VALUE {
                // This is the final byte.
                // Make sure we haven't exceeded the configured maximum size
                if encoded_size_in_bytes > MAX_ENCODED_SIZE_IN_BYTES {
                    return Self::value_too_large(
                        "a VarUInt",
                        encoded_size_in_bytes,
                        MAX_ENCODED_SIZE_IN_BYTES,
                    );
                }
                self.consume(encoded_size_in_bytes);
                return Ok(VarUInt::new(magnitude, encoded_size_in_bytes));
            }
        }

        incomplete_data_error("a VarUInt", self.total_consumed() + encoded_size_in_bytes)
    }

    /// Reads a `VarInt` encoding primitive from the beginning of the buffer. If it is successful,
    /// returns an `Ok(_)` containing its [VarInt] representation and consumes the source bytes.
    ///
    /// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#varuint-and-varint-fields>
    pub fn read_var_int(&mut self) -> IonResult<VarInt> {
        const BITS_PER_ENCODED_BYTE: usize = 7;
        const STORAGE_SIZE_IN_BITS: usize = mem::size_of::<i64>() * 8;
        const MAX_ENCODED_SIZE_IN_BYTES: usize = STORAGE_SIZE_IN_BITS / BITS_PER_ENCODED_BYTE;

        const LOWER_6_BITMASK: u8 = 0b0011_1111;
        const LOWER_7_BITMASK: u8 = 0b0111_1111;
        const HIGHEST_BIT_VALUE: u8 = 0b1000_0000;

        const BITS_PER_BYTE: usize = 8;
        const BITS_PER_U64: usize = mem::size_of::<u64>() * BITS_PER_BYTE;

        // Unlike VarUInt's encoding, the first byte in a VarInt is a special case because
        // bit #6 (0-indexed, from the right) indicates whether the value is positive (0) or
        // negative (1).

        if self.is_empty() {
            return incomplete_data_error("a VarInt", self.total_consumed());
        }
        let first_byte: u8 = self.peek_next_byte().unwrap();
        let no_more_bytes: bool = first_byte >= 0b1000_0000; // If the first bit is 1, we're done.
        let is_negative: bool = (first_byte & 0b0100_0000) == 0b0100_0000;
        let sign: i64 = if is_negative { -1 } else { 1 };
        let mut magnitude = (first_byte & 0b0011_1111) as i64;

        if no_more_bytes {
            self.consume(1);
            return Ok(VarInt::new(magnitude * sign, is_negative, 1));
        }

        let mut encoded_size_in_bytes = 1;
        // Whether we found the terminating byte in this buffer.
        let mut terminated = false;

        for byte in self.bytes()[1..].iter().copied() {
            let lower_seven = (0b0111_1111 & byte) as i64;
            magnitude <<= 7;
            magnitude |= lower_seven;
            encoded_size_in_bytes += 1;
            if byte >= 0b1000_0000 {
                terminated = true;
                break;
            }
        }

        if !terminated {
            return incomplete_data_error(
                "a VarInt",
                self.total_consumed() + encoded_size_in_bytes,
            );
        }

        if encoded_size_in_bytes > MAX_ENCODED_SIZE_IN_BYTES {
            return decoding_error(format!(
                "Found a {encoded_size_in_bytes}-byte VarInt. Max supported size is {MAX_ENCODED_SIZE_IN_BYTES} bytes."
            ));
        }

        self.consume(encoded_size_in_bytes);
        Ok(VarInt::new(
            magnitude * sign,
            is_negative,
            encoded_size_in_bytes,
        ))
    }

    /// Reads the first `length` bytes from the buffer as a `UInt` encoding primitive. If it is
    /// successful, returns an `Ok(_)` containing its [DecodedUInt] representation and consumes the
    /// source bytes.
    ///
    /// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields>
    pub fn read_uint(&mut self, length: usize) -> IonResult<DecodedUInt> {
        if length <= mem::size_of::<u64>() {
            return self.read_small_uint(length);
        }

        // The UInt is too large to fit in a u64; read it as a BigUInt instead.
        self.read_big_uint(length)
    }

    /// Reads the first `length` bytes from the buffer as a `UInt`. The caller must confirm that
    /// `length` is small enough to fit in a `u64`.
    #[inline]
    fn read_small_uint(&mut self, length: usize) -> IonResult<DecodedUInt> {
        let uint_bytes = self
            .peek_n_bytes(length)
            .ok_or_else(|| incomplete_data_error_raw("a UInt", self.total_consumed()))?;
        let magnitude = DecodedUInt::small_uint_from_slice(uint_bytes);
        self.consume(length);
        Ok(DecodedUInt::new(UInt::U64(magnitude), length))
    }

    /// Reads the first `length` bytes from the buffer as a `UInt`. If `length` is small enough
    /// that the value can fit in a `usize`, it is strongly recommended that you use
    /// `read_small_uint` instead as it will be much faster.
    #[inline(never)]
    // This method performs allocations and its generated assembly is rather large. Isolating its
    // logic in a separate method that is never inlined keeps `read_uint` (its caller) small enough
    // to inline. This is important as `read_uint` is on the hot path for most Ion streams.
    fn read_big_uint(&mut self, length: usize) -> IonResult<DecodedUInt> {
        if length > MAX_UINT_SIZE_IN_BYTES {
            return Self::value_too_large("a Uint", length, MAX_UINT_SIZE_IN_BYTES);
        }

        let uint_bytes = self
            .peek_n_bytes(length)
            .ok_or_else(|| incomplete_data_error_raw("a UInt", self.total_consumed()))?;

        let magnitude = BigUint::from_bytes_be(uint_bytes);
        self.consume(length);
        Ok(DecodedUInt::new(UInt::BigUInt(magnitude), length))
    }

    #[inline(never)]
    // This method is inline(never) because it is rarely invoked and its allocations/formatting
    // compile to a non-trivial number of instructions.
    fn value_too_large<T>(label: &str, length: usize, max_length: usize) -> IonResult<T> {
        decoding_error(format!(
            "found {label} that was too large; size = {length}, max size = {max_length}"
        ))
    }

    /// Reads the first `length` bytes from the buffer as an `Int` encoding primitive. If it is
    /// successful, returns an `Ok(_)` containing its [DecodedInt] representation and consumes the
    /// source bytes.
    ///
    /// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields>
    pub fn read_int(&mut self, length: usize) -> IonResult<DecodedInt> {
        if length == 0 {
            return Ok(DecodedInt::new(Int::I64(0), false, 0));
        } else if length > MAX_INT_SIZE_IN_BYTES {
            return decoding_error(format!(
                "Found a {length}-byte Int. Max supported size is {MAX_INT_SIZE_IN_BYTES} bytes."
            ));
        }

        let int_bytes = self.peek_n_bytes(length).ok_or_else(|| {
            incomplete_data_error_raw("an Int encoding primitive", self.total_consumed())
        })?;

        let mut is_negative: bool = false;

        let value = if length <= mem::size_of::<i64>() {
            // This Int will fit in an i64.
            let first_byte: i64 = i64::from(int_bytes[0]);
            let sign: i64 = if first_byte & 0b1000_0000 == 0 {
                1
            } else {
                is_negative = true;
                -1
            };
            let mut magnitude: i64 = first_byte & 0b0111_1111;
            for &byte in &int_bytes[1..] {
                let byte = i64::from(byte);
                magnitude <<= 8;
                magnitude |= byte;
            }
            Int::I64(sign * magnitude)
        } else {
            // This Int is too big for an i64, we'll need to use a BigInt
            let value = if int_bytes[0] & 0b1000_0000 == 0 {
                BigInt::from_bytes_be(Sign::Plus, int_bytes)
            } else {
                is_negative = true;
                // The leading sign bit is the only part of the input that can't be considered
                // unsigned, big-endian integer bytes. We need to make our own copy of the input
                // so we can flip that bit back to a zero before calling `from_bytes_be`.
                let mut owned_int_bytes = Vec::from(int_bytes);
                owned_int_bytes[0] &= 0b0111_1111;
                BigInt::from_bytes_be(Sign::Minus, owned_int_bytes.as_slice())
            };

            Int::BigInt(value)
        };
        self.consume(length);
        Ok(DecodedInt::new(value, is_negative, length))
    }

    /// Reads a `NOP` encoding primitive from the buffer. If it is successful, returns an `Ok(_)`
    /// containing the number of bytes that were consumed.
    ///
    /// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#nop-pad>
    #[inline(never)]
    // NOP padding is not widely used in Ion 1.0, in part because many writer implementations do not
    // expose the ability to write them. As such, this method has been marked `inline(never)` to
    // allow the hot path to be better optimized.
    pub fn read_nop_pad(&mut self) -> IonResult<usize> {
        let type_descriptor = self.peek_type_descriptor()?;
        // Advance beyond the type descriptor
        self.consume(1);
        // If the type descriptor says we should skip more bytes, skip them.
        let length = self.read_length(type_descriptor.length_code)?;
        if self.remaining() < length.value() {
            return incomplete_data_error("a NOP", self.total_consumed());
        }
        self.consume(length.value());
        Ok(1 + length.size_in_bytes() + length.value())
    }

    /// Interprets the length code in the provided [Header]; if necessary, will read more bytes
    /// from the buffer to interpret as the value's length. If it is successful, returns an `Ok(_)`
    /// containing a [VarUInt] representation of the value's length and consumes any additional
    /// bytes read. If no additional bytes were read, the returned `VarUInt`'s `size_in_bytes()`
    /// method will return `0`.
    pub fn read_value_length(&mut self, header: Header) -> IonResult<VarUInt> {
        use IonType::*;
        // Some type-specific `length` field overrides
        let length_code = match header.ion_type {
            // Null (0x0F) and Boolean (0x10, 0x11) are the only types that don't have/use a `length`
            // field; the header contains the complete value.
            Null | Bool => 0,
            // If a struct has length = 1, its fields are ordered and the actual length follows.
            // For the time being, this reader does not have any special handling for this case.
            // Use `0xE` (14) as the length code instead so the call to `read_length` below
            // consumes a VarUInt.
            Struct if header.length_code == 1 => length_codes::VAR_UINT,
            // For any other type, use the header's declared length code.
            _ => header.length_code,
        };

        // Read the length, potentially consuming a VarUInt in the process.
        let length = self.read_length(length_code)?;

        // After we get the length, perform some type-specific validation.
        match header.ion_type {
            Float => match header.length_code {
                0 | 4 | 8 | 15 => {}
                _ => return decoding_error("found a float with an illegal length code"),
            },
            Timestamp if !header.is_null() && length.value() <= 1 => {
                return decoding_error("found a timestamp with length <= 1")
            }
            Struct if header.length_code == 1 && length.value() == 0 => {
                return decoding_error("found an empty ordered struct")
            }
            _ => {}
        };

        Ok(length)
    }

    /// Interprets a type descriptor's `L` nibble (length) in the way used by most Ion types.
    ///
    /// If `L` is...
    ///   * `f`: the value is a typed `null` and its length is `0`.
    ///   * `e`: the length is encoded as a `VarUInt` that follows the type descriptor.
    ///   * anything else: the `L` represents the actual length.
    ///
    /// If successful, returns an `Ok(_)` that contains the [VarUInt] representation
    /// of the value's length and consumes any additional bytes read.
    pub fn read_length(&mut self, length_code: u8) -> IonResult<VarUInt> {
        let length = match length_code {
            length_codes::NULL => VarUInt::new(0, 0),
            length_codes::VAR_UINT => self.read_var_uint()?,
            magnitude => VarUInt::new(magnitude as usize, 0),
        };

        Ok(length)
    }
}

/// These methods are only available to `BinaryBuffer`s that wrap a `Vec<u8>`. That is: buffers
/// that own a growable array into which more data can be appended.
// TODO: Instead of pinning this to Vec<u8>, we should define a trait that allows any owned/growable
//       byte buffer type to be used.
impl BinaryBuffer<Vec<u8>> {
    /// Moves any unread bytes to the front of the `Vec<u8>`, making room for more data at the tail.
    /// This method should only be called when the bytes remaining in the buffer represent an
    /// incomplete value; as such, the required `memcpy` should typically be quite small.
    fn restack(&mut self) {
        let remaining = self.remaining();
        self.data.copy_within(self.start..self.end, 0);
        self.start = 0;
        self.end = remaining;
        self.data.truncate(remaining);
    }

    /// Copies the provided bytes to end of the input buffer.
    pub fn append_bytes(&mut self, bytes: &[u8]) {
        self.restack();
        self.data.extend_from_slice(bytes);
        self.end += bytes.len();
    }

    /// Tries to read `length` bytes from `source`. Unlike [`append_bytes`](Self::append_bytes),
    /// this method does not do any copying. A slice of the reader's buffer is handed to `source`
    /// so it can be populated directly.
    ///
    /// If successful, returns an `Ok(_)` containing the number of bytes that were actually read.
    pub fn read_from<R: Read>(&mut self, mut source: R, length: usize) -> IonResult<usize> {
        self.restack();
        // Make sure that there are `length` bytes in the `Vec` beyond `self.end`.
        self.reserve_capacity(length);
        // Get a mutable slice to the first `length` bytes starting at `self.end`.
        let read_buffer = &mut self.data.as_mut_slice()[self.end..(self.end + length)];
        // Use that slice as our input buffer to read from the source.
        let bytes_read = source.read(read_buffer)?;
        // Update `self.end` to reflect that we have more data available to read.
        self.end += bytes_read;

        Ok(bytes_read)
    }

    /// Pushes `0u8` onto the end of the `Vec<u8>` until there are `length` bytes available beyond
    /// `self.end`. This block of zeroed out bytes can then be used as an input I/O buffer for calls
    /// to `read_from`. Applications should only use `read_from` when the buffer has been depleted,
    /// which means that calls to this method should usually be no-ops.
    fn reserve_capacity(&mut self, length: usize) {
        // TODO: More sophisticated logic to avoid potentially reallocating multiple times per call.
        //       For now, it is unlikely that this would happen often.
        let capacity = self.data.len() - self.end;
        if capacity < length {
            self.data.resize(self.data.len() + length - capacity, 0);
        }
    }
}

/// Constructs a [BinaryBuffer] from anything that can be viewed as a slice of bytes, including
/// `&[u8]`, `Vec<u8>`, `Buf`, etc.
impl<A: AsRef<[u8]>> From<A> for BinaryBuffer<A> {
    fn from(data: A) -> Self {
        let end = data.as_ref().len();
        BinaryBuffer {
            data,
            start: 0,
            end,
            total_consumed: 0,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::IonError;
    use num_traits::Num;

    fn input_test<I: AsRef<[u8]> + Into<BinaryBuffer<I>>>(input: I) {
        let mut input = input.into();
        // We can peek at the first byte...
        assert_eq!(input.peek_next_byte(), Some(b'f'));
        // ...without modifying the input. Looking at the next 3 bytes still includes 'f'.
        assert_eq!(input.peek_n_bytes(3), Some("foo".as_bytes()));
        // Advancing the cursor by 1...
        input.consume(1);
        // ...causes next_byte() to return 'o'.
        assert_eq!(input.peek_next_byte(), Some(b'o'));
        input.consume(1);
        assert_eq!(input.peek_next_byte(), Some(b'o'));
        input.consume(1);
        assert_eq!(input.peek_n_bytes(2), Some(" b".as_bytes()));
        assert_eq!(input.peek_n_bytes(6), Some(" bar b".as_bytes()));
    }

    #[test]
    fn string_test() {
        input_test(String::from("foo bar baz"));
    }

    #[test]
    fn slice_test() {
        input_test("foo bar baz".as_bytes());
    }

    #[test]
    fn vec_test() {
        input_test(Vec::from("foo bar baz".as_bytes()));
    }

    #[test]
    fn read_var_uint() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0111_1001, 0b0000_1111, 0b1000_0001]);
        let var_uint = buffer.read_var_uint()?;
        assert_eq!(3, var_uint.size_in_bytes());
        assert_eq!(1_984_385, var_uint.value());
        Ok(())
    }

    #[test]
    fn read_var_uint_zero() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b1000_0000]);
        let var_uint = buffer.read_var_uint()?;
        assert_eq!(var_uint.size_in_bytes(), 1);
        assert_eq!(var_uint.value(), 0);
        Ok(())
    }

    #[test]
    fn read_var_uint_two_bytes_max_value() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
        let var_uint = buffer.read_var_uint()?;
        assert_eq!(var_uint.size_in_bytes(), 2);
        assert_eq!(var_uint.value(), 16_383);
        Ok(())
    }

    #[test]
    fn read_incomplete_var_uint() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0111_1001, 0b0000_1111]);
        match buffer.read_var_uint() {
            Err(IonError::Incomplete { .. }) => Ok(()),
            other => panic!("expected IonError::Incomplete, but found: {other:?}"),
        }
    }

    #[test]
    fn read_var_uint_overflow_detection() {
        let mut buffer = BinaryBuffer::new(&[
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b1111_1111,
        ]);
        buffer
            .read_var_uint()
            .expect_err("This should have failed due to overflow.");
    }

    #[test]
    fn read_var_int_zero() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b1000_0000]);
        let var_int = buffer.read_var_int()?;
        assert_eq!(var_int.size_in_bytes(), 1);
        assert_eq!(var_int.value(), 0);
        Ok(())
    }

    #[test]
    fn read_negative_var_int() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0111_1001, 0b0000_1111, 0b1000_0001]);
        let var_int = buffer.read_var_int()?;
        assert_eq!(var_int.size_in_bytes(), 3);
        assert_eq!(var_int.value(), -935_809);
        Ok(())
    }

    #[test]
    fn read_positive_var_int() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0011_1001, 0b0000_1111, 0b1000_0001]);
        let var_int = buffer.read_var_int()?;
        assert_eq!(var_int.size_in_bytes(), 3);
        assert_eq!(var_int.value(), 935_809);
        Ok(())
    }

    #[test]
    fn read_var_int_two_byte_min() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
        let var_int = buffer.read_var_int()?;
        assert_eq!(var_int.size_in_bytes(), 2);
        assert_eq!(var_int.value(), -8_191);
        Ok(())
    }

    #[test]
    fn read_var_int_two_byte_max() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0011_1111, 0b1111_1111]);
        let var_int = buffer.read_var_int()?;
        assert_eq!(var_int.size_in_bytes(), 2);
        assert_eq!(var_int.value(), 8_191);
        Ok(())
    }

    #[test]
    fn read_var_int_overflow_detection() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b0111_1111,
            0b1111_1111,
        ]);
        buffer
            .read_var_int()
            .expect_err("This should have failed due to overflow.");
        Ok(())
    }

    #[test]
    fn read_one_byte_uint() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b1000_0000]);
        let var_int = buffer.read_uint(buffer.remaining())?;
        assert_eq!(var_int.size_in_bytes(), 1);
        assert_eq!(var_int.value(), &UInt::U64(128));
        Ok(())
    }

    #[test]
    fn read_two_byte_uint() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
        let var_int = buffer.read_uint(buffer.remaining())?;
        assert_eq!(var_int.size_in_bytes(), 2);
        assert_eq!(var_int.value(), &UInt::U64(32_767));
        Ok(())
    }

    #[test]
    fn read_three_byte_uint() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0011_1100, 0b1000_0111, 0b1000_0001]);
        let var_int = buffer.read_uint(buffer.remaining())?;
        assert_eq!(var_int.size_in_bytes(), 3);
        assert_eq!(var_int.value(), &UInt::U64(3_966_849));
        Ok(())
    }

    #[test]
    fn test_read_ten_byte_uint() -> IonResult<()> {
        let data = vec![0xFFu8; 10];
        let mut buffer = BinaryBuffer::new(data);
        let uint = buffer.read_uint(buffer.remaining())?;
        assert_eq!(uint.size_in_bytes(), 10);
        assert_eq!(
            uint.value(),
            &UInt::BigUInt(BigUint::from_str_radix("ffffffffffffffffffff", 16).unwrap())
        );
        Ok(())
    }

    #[test]
    fn test_read_uint_too_large() {
        let mut buffer = Vec::with_capacity(MAX_UINT_SIZE_IN_BYTES + 1);
        buffer.resize(MAX_UINT_SIZE_IN_BYTES + 1, 1);
        let mut buffer = BinaryBuffer::new(buffer);
        let _uint = buffer
            .read_uint(buffer.remaining())
            .expect_err("This exceeded the configured max UInt size.");
    }

    #[test]
    fn read_int_negative_zero() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b1000_0000]); // Negative zero
        let int = buffer.read_int(buffer.remaining())?;
        assert_eq!(int.size_in_bytes(), 1);
        assert_eq!(int.value(), &Int::I64(0));
        assert!(int.is_negative_zero());
        Ok(())
    }

    #[test]
    fn read_int_positive_zero() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0000_0000]); // Negative zero
        let int = buffer.read_int(buffer.remaining())?;
        assert_eq!(int.size_in_bytes(), 1);
        assert_eq!(int.value(), &Int::I64(0));
        assert!(!int.is_negative_zero());
        Ok(())
    }

    #[test]
    fn read_int_length_zero() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[]); // Negative zero
        let int = buffer.read_int(buffer.remaining())?;
        assert_eq!(int.size_in_bytes(), 0);
        assert_eq!(int.value(), &Int::I64(0));
        assert!(!int.is_negative_zero());
        Ok(())
    }

    #[test]
    fn read_two_byte_negative_int() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b1111_1111, 0b1111_1111]);
        let int = buffer.read_int(buffer.remaining())?;
        assert_eq!(int.size_in_bytes(), 2);
        assert_eq!(int.value(), &Int::I64(-32_767));
        Ok(())
    }

    #[test]
    fn read_two_byte_positive_int() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
        let int = buffer.read_int(buffer.remaining())?;
        assert_eq!(int.size_in_bytes(), 2);
        assert_eq!(int.value(), &Int::I64(32_767));
        Ok(())
    }

    #[test]
    fn read_three_byte_negative_int() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b1011_1100, 0b1000_0111, 0b1000_0001]);
        let int = buffer.read_int(buffer.remaining())?;
        assert_eq!(int.size_in_bytes(), 3);
        assert_eq!(int.value(), &Int::I64(-3_966_849));
        Ok(())
    }

    #[test]
    fn read_three_byte_positive_int() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(&[0b0011_1100, 0b1000_0111, 0b1000_0001]);
        let int = buffer.read_int(buffer.remaining())?;
        assert_eq!(int.size_in_bytes(), 3);
        assert_eq!(int.value(), &Int::I64(3_966_849));
        Ok(())
    }

    #[test]
    fn read_int_overflow() -> IonResult<()> {
        let mut buffer = BinaryBuffer::new(vec![1; MAX_INT_SIZE_IN_BYTES + 1]); // Negative zero
        buffer
            .read_int(buffer.remaining())
            .expect_err("This exceeded the configured max Int size.");
        Ok(())
    }

    #[test]
    fn validate_read_from_size() -> IonResult<()> {
        // This test validates that the size of data we wish to read is actually honored by
        // read_from. A bug existed where the sub-slice of the buffer was calculated incorrectly,
        // leading to the potential for failed reads, or increasingly smaller reads.
        let mut buffer = BinaryBuffer::new(vec![0; 10]);
        let new_data: &[u8] = &[0; 11];
        let bytes_read = buffer.read_from(new_data, 11)?;
        assert_eq!(bytes_read, 11);

        Ok(())
    }
}