1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
use crate::binary::constants::v1_0::{length_codes, IVM};
use crate::binary::int::DecodedInt;
use crate::binary::non_blocking::type_descriptor::{
Header, TypeDescriptor, ION_1_0_TYPE_DESCRIPTORS,
};
use crate::binary::uint::DecodedUInt;
use crate::binary::var_int::VarInt;
use crate::binary::var_uint::VarUInt;
use crate::result::{decoding_error, incomplete_data_error, incomplete_data_error_raw};
use crate::types::{Int, UInt};
use crate::{IonResult, IonType};
use num_bigint::{BigInt, BigUint, Sign};
use std::io::Read;
use std::mem;
// This limit is used for stack-allocating buffer space to encode/decode UInts.
const UINT_STACK_BUFFER_SIZE: usize = 16;
// This number was chosen somewhat arbitrarily and could be lifted if a use case demands it.
const MAX_UINT_SIZE_IN_BYTES: usize = 2048;
// This limit is used for stack-allocating buffer space to encode/decode Ints.
const INT_STACK_BUFFER_SIZE: usize = 16;
// This number was chosen somewhat arbitrarily and could be lifted if a use case demands it.
const MAX_INT_SIZE_IN_BYTES: usize = 2048;
/// A stack-allocated wrapper around an `AsRef<[u8]>` that provides methods to read Ion's
/// encoding primitives.
///
/// When the wrapped type is a `Vec<u8>`, data can be appended to the buffer between read
/// operations.
#[derive(Debug, PartialEq)]
pub(crate) struct BinaryBuffer<A: AsRef<[u8]>> {
data: A,
start: usize,
end: usize,
total_consumed: usize,
}
impl<A: AsRef<[u8]>> BinaryBuffer<A> {
/// Constructs a new BinaryBuffer that wraps `data`.
#[inline]
pub fn new(data: A) -> BinaryBuffer<A> {
let end = data.as_ref().len();
BinaryBuffer {
data,
start: 0,
end,
total_consumed: 0,
}
}
/// Creates an independent view of the `BinaryBuffer`'s data. The `BinaryBuffer` that is
/// returned tracks its own position and consumption without affecting the original.
pub fn slice(&self) -> BinaryBuffer<&A> {
BinaryBuffer {
data: &self.data,
start: self.start,
end: self.end,
total_consumed: self.total_consumed,
}
}
/// Returns a slice containing all of the buffer's remaining bytes.
pub fn bytes(&self) -> &[u8] {
&self.data.as_ref()[self.start..self.end]
}
/// Returns a slice containing all of the buffer's bytes. This includes all of the consumed
/// bytes, and remaining unconsumed bytes.
pub(crate) fn raw_bytes(&self) -> &[u8] {
self.data.as_ref()
}
/// Gets a slice from the buffer starting at `offset` and ending at `offset + length`.
/// The caller must check that the buffer contains `length + offset` bytes prior
/// to calling this method.
pub fn bytes_range(&self, offset: usize, length: usize) -> &[u8] {
let from = self.start + offset;
let to = from + length;
&self.data.as_ref()[from..to]
}
/// Returns the number of bytes that have been marked as read either via the
/// [`consume`](Self::consume) method or one of the `read_*` methods.
pub fn total_consumed(&self) -> usize {
self.total_consumed
}
/// Returns the number of unread bytes left in the buffer.
pub fn remaining(&self) -> usize {
self.end - self.start
}
/// Returns `true` if there are no bytes remaining in the buffer. Otherwise, returns `false`.
pub fn is_empty(&self) -> bool {
self.start == self.end
}
/// If the buffer is not empty, returns `Some(_)` containing the next byte in the buffer.
/// Otherwise, returns `None`.
pub fn peek_next_byte(&self) -> Option<u8> {
self.data.as_ref().get(self.start).copied()
}
/// If there are at least `n` bytes left in the buffer, returns `Some(_)` containing a slice
/// with the first `n` bytes. Otherwise, returns `None`.
pub fn peek_n_bytes(&self, n: usize) -> Option<&[u8]> {
self.data.as_ref().get(self.start..self.start + n)
}
/// Marks the first `num_bytes_to_consume` bytes in the buffer as having been read.
///
/// After data has been inspected using the `peek` methods, those bytes can be marked as read
/// by calling the `consume` method.
///
/// Note that the various `read_*` methods to parse Ion encoding primitives automatically
/// consume the bytes they read if they are successful.
#[inline]
pub fn consume(&mut self, num_bytes_to_consume: usize) {
// This assertion is always run during testing but is removed in the release build.
debug_assert!(num_bytes_to_consume <= self.remaining());
self.start += num_bytes_to_consume;
self.total_consumed += num_bytes_to_consume;
}
/// Reads (but does not consume) the first byte in the buffer and returns it as a
/// [TypeDescriptor].
pub fn peek_type_descriptor(&self) -> IonResult<TypeDescriptor> {
if self.is_empty() {
return incomplete_data_error("a type descriptor", self.total_consumed());
}
let next_byte = self.data.as_ref()[self.start];
Ok(ION_1_0_TYPE_DESCRIPTORS[next_byte as usize])
}
/// Reads the first four bytes in the buffer as an Ion version marker. If it is successful,
/// returns an `Ok(_)` containing a `(major, minor)` version tuple and consumes the
/// source bytes.
///
/// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#value-streams>
pub fn read_ivm(&mut self) -> IonResult<(u8, u8)> {
let bytes = self
.peek_n_bytes(IVM.len())
.ok_or_else(|| incomplete_data_error_raw("an IVM", self.total_consumed()))?;
match bytes {
[0xE0, major, minor, 0xEA] => {
let version = (*major, *minor);
self.consume(IVM.len());
Ok(version)
}
invalid_ivm => decoding_error(format!("invalid IVM: {invalid_ivm:?}")),
}
}
/// Reads a `VarUInt` encoding primitive from the beginning of the buffer. If it is successful,
/// returns an `Ok(_)` containing its [VarUInt] representation and consumes the source bytes.
///
/// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#varuint-and-varint-fields>
pub fn read_var_uint(&mut self) -> IonResult<VarUInt> {
const BITS_PER_ENCODED_BYTE: usize = 7;
const STORAGE_SIZE_IN_BITS: usize = mem::size_of::<usize>() * 8;
const MAX_ENCODED_SIZE_IN_BYTES: usize = STORAGE_SIZE_IN_BITS / BITS_PER_ENCODED_BYTE;
const LOWER_7_BITMASK: u8 = 0b0111_1111;
const HIGHEST_BIT_VALUE: u8 = 0b1000_0000;
let mut magnitude: usize = 0;
let mut encoded_size_in_bytes = 0;
for byte in self.bytes().iter().copied() {
encoded_size_in_bytes += 1;
magnitude <<= 7; // Shifts 0 to 0 in the first iteration
let lower_seven = (LOWER_7_BITMASK & byte) as usize;
magnitude |= lower_seven;
if byte >= HIGHEST_BIT_VALUE {
// This is the final byte.
// Make sure we haven't exceeded the configured maximum size
if encoded_size_in_bytes > MAX_ENCODED_SIZE_IN_BYTES {
return Self::value_too_large(
"a VarUInt",
encoded_size_in_bytes,
MAX_ENCODED_SIZE_IN_BYTES,
);
}
self.consume(encoded_size_in_bytes);
return Ok(VarUInt::new(magnitude, encoded_size_in_bytes));
}
}
incomplete_data_error("a VarUInt", self.total_consumed() + encoded_size_in_bytes)
}
/// Reads a `VarInt` encoding primitive from the beginning of the buffer. If it is successful,
/// returns an `Ok(_)` containing its [VarInt] representation and consumes the source bytes.
///
/// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#varuint-and-varint-fields>
pub fn read_var_int(&mut self) -> IonResult<VarInt> {
const BITS_PER_ENCODED_BYTE: usize = 7;
const STORAGE_SIZE_IN_BITS: usize = mem::size_of::<i64>() * 8;
const MAX_ENCODED_SIZE_IN_BYTES: usize = STORAGE_SIZE_IN_BITS / BITS_PER_ENCODED_BYTE;
const LOWER_6_BITMASK: u8 = 0b0011_1111;
const LOWER_7_BITMASK: u8 = 0b0111_1111;
const HIGHEST_BIT_VALUE: u8 = 0b1000_0000;
const BITS_PER_BYTE: usize = 8;
const BITS_PER_U64: usize = mem::size_of::<u64>() * BITS_PER_BYTE;
// Unlike VarUInt's encoding, the first byte in a VarInt is a special case because
// bit #6 (0-indexed, from the right) indicates whether the value is positive (0) or
// negative (1).
if self.is_empty() {
return incomplete_data_error("a VarInt", self.total_consumed());
}
let first_byte: u8 = self.peek_next_byte().unwrap();
let no_more_bytes: bool = first_byte >= 0b1000_0000; // If the first bit is 1, we're done.
let is_negative: bool = (first_byte & 0b0100_0000) == 0b0100_0000;
let sign: i64 = if is_negative { -1 } else { 1 };
let mut magnitude = (first_byte & 0b0011_1111) as i64;
if no_more_bytes {
self.consume(1);
return Ok(VarInt::new(magnitude * sign, is_negative, 1));
}
let mut encoded_size_in_bytes = 1;
// Whether we found the terminating byte in this buffer.
let mut terminated = false;
for byte in self.bytes()[1..].iter().copied() {
let lower_seven = (0b0111_1111 & byte) as i64;
magnitude <<= 7;
magnitude |= lower_seven;
encoded_size_in_bytes += 1;
if byte >= 0b1000_0000 {
terminated = true;
break;
}
}
if !terminated {
return incomplete_data_error(
"a VarInt",
self.total_consumed() + encoded_size_in_bytes,
);
}
if encoded_size_in_bytes > MAX_ENCODED_SIZE_IN_BYTES {
return decoding_error(format!(
"Found a {encoded_size_in_bytes}-byte VarInt. Max supported size is {MAX_ENCODED_SIZE_IN_BYTES} bytes."
));
}
self.consume(encoded_size_in_bytes);
Ok(VarInt::new(
magnitude * sign,
is_negative,
encoded_size_in_bytes,
))
}
/// Reads the first `length` bytes from the buffer as a `UInt` encoding primitive. If it is
/// successful, returns an `Ok(_)` containing its [DecodedUInt] representation and consumes the
/// source bytes.
///
/// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields>
pub fn read_uint(&mut self, length: usize) -> IonResult<DecodedUInt> {
if length <= mem::size_of::<u64>() {
return self.read_small_uint(length);
}
// The UInt is too large to fit in a u64; read it as a BigUInt instead.
self.read_big_uint(length)
}
/// Reads the first `length` bytes from the buffer as a `UInt`. The caller must confirm that
/// `length` is small enough to fit in a `u64`.
#[inline]
fn read_small_uint(&mut self, length: usize) -> IonResult<DecodedUInt> {
let uint_bytes = self
.peek_n_bytes(length)
.ok_or_else(|| incomplete_data_error_raw("a UInt", self.total_consumed()))?;
let magnitude = DecodedUInt::small_uint_from_slice(uint_bytes);
self.consume(length);
Ok(DecodedUInt::new(UInt::U64(magnitude), length))
}
/// Reads the first `length` bytes from the buffer as a `UInt`. If `length` is small enough
/// that the value can fit in a `usize`, it is strongly recommended that you use
/// `read_small_uint` instead as it will be much faster.
#[inline(never)]
// This method performs allocations and its generated assembly is rather large. Isolating its
// logic in a separate method that is never inlined keeps `read_uint` (its caller) small enough
// to inline. This is important as `read_uint` is on the hot path for most Ion streams.
fn read_big_uint(&mut self, length: usize) -> IonResult<DecodedUInt> {
if length > MAX_UINT_SIZE_IN_BYTES {
return Self::value_too_large("a Uint", length, MAX_UINT_SIZE_IN_BYTES);
}
let uint_bytes = self
.peek_n_bytes(length)
.ok_or_else(|| incomplete_data_error_raw("a UInt", self.total_consumed()))?;
let magnitude = BigUint::from_bytes_be(uint_bytes);
self.consume(length);
Ok(DecodedUInt::new(UInt::BigUInt(magnitude), length))
}
#[inline(never)]
// This method is inline(never) because it is rarely invoked and its allocations/formatting
// compile to a non-trivial number of instructions.
fn value_too_large<T>(label: &str, length: usize, max_length: usize) -> IonResult<T> {
decoding_error(format!(
"found {label} that was too large; size = {length}, max size = {max_length}"
))
}
/// Reads the first `length` bytes from the buffer as an `Int` encoding primitive. If it is
/// successful, returns an `Ok(_)` containing its [DecodedInt] representation and consumes the
/// source bytes.
///
/// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields>
pub fn read_int(&mut self, length: usize) -> IonResult<DecodedInt> {
if length == 0 {
return Ok(DecodedInt::new(Int::I64(0), false, 0));
} else if length > MAX_INT_SIZE_IN_BYTES {
return decoding_error(format!(
"Found a {length}-byte Int. Max supported size is {MAX_INT_SIZE_IN_BYTES} bytes."
));
}
let int_bytes = self.peek_n_bytes(length).ok_or_else(|| {
incomplete_data_error_raw("an Int encoding primitive", self.total_consumed())
})?;
let mut is_negative: bool = false;
let value = if length <= mem::size_of::<i64>() {
// This Int will fit in an i64.
let first_byte: i64 = i64::from(int_bytes[0]);
let sign: i64 = if first_byte & 0b1000_0000 == 0 {
1
} else {
is_negative = true;
-1
};
let mut magnitude: i64 = first_byte & 0b0111_1111;
for &byte in &int_bytes[1..] {
let byte = i64::from(byte);
magnitude <<= 8;
magnitude |= byte;
}
Int::I64(sign * magnitude)
} else {
// This Int is too big for an i64, we'll need to use a BigInt
let value = if int_bytes[0] & 0b1000_0000 == 0 {
BigInt::from_bytes_be(Sign::Plus, int_bytes)
} else {
is_negative = true;
// The leading sign bit is the only part of the input that can't be considered
// unsigned, big-endian integer bytes. We need to make our own copy of the input
// so we can flip that bit back to a zero before calling `from_bytes_be`.
let mut owned_int_bytes = Vec::from(int_bytes);
owned_int_bytes[0] &= 0b0111_1111;
BigInt::from_bytes_be(Sign::Minus, owned_int_bytes.as_slice())
};
Int::BigInt(value)
};
self.consume(length);
Ok(DecodedInt::new(value, is_negative, length))
}
/// Reads a `NOP` encoding primitive from the buffer. If it is successful, returns an `Ok(_)`
/// containing the number of bytes that were consumed.
///
/// See: <https://amazon-ion.github.io/ion-docs/docs/binary.html#nop-pad>
#[inline(never)]
// NOP padding is not widely used in Ion 1.0, in part because many writer implementations do not
// expose the ability to write them. As such, this method has been marked `inline(never)` to
// allow the hot path to be better optimized.
pub fn read_nop_pad(&mut self) -> IonResult<usize> {
let type_descriptor = self.peek_type_descriptor()?;
// Advance beyond the type descriptor
self.consume(1);
// If the type descriptor says we should skip more bytes, skip them.
let length = self.read_length(type_descriptor.length_code)?;
if self.remaining() < length.value() {
return incomplete_data_error("a NOP", self.total_consumed());
}
self.consume(length.value());
Ok(1 + length.size_in_bytes() + length.value())
}
/// Interprets the length code in the provided [Header]; if necessary, will read more bytes
/// from the buffer to interpret as the value's length. If it is successful, returns an `Ok(_)`
/// containing a [VarUInt] representation of the value's length and consumes any additional
/// bytes read. If no additional bytes were read, the returned `VarUInt`'s `size_in_bytes()`
/// method will return `0`.
pub fn read_value_length(&mut self, header: Header) -> IonResult<VarUInt> {
use IonType::*;
// Some type-specific `length` field overrides
let length_code = match header.ion_type {
// Null (0x0F) and Boolean (0x10, 0x11) are the only types that don't have/use a `length`
// field; the header contains the complete value.
Null | Bool => 0,
// If a struct has length = 1, its fields are ordered and the actual length follows.
// For the time being, this reader does not have any special handling for this case.
// Use `0xE` (14) as the length code instead so the call to `read_length` below
// consumes a VarUInt.
Struct if header.length_code == 1 => length_codes::VAR_UINT,
// For any other type, use the header's declared length code.
_ => header.length_code,
};
// Read the length, potentially consuming a VarUInt in the process.
let length = self.read_length(length_code)?;
// After we get the length, perform some type-specific validation.
match header.ion_type {
Float => match header.length_code {
0 | 4 | 8 | 15 => {}
_ => return decoding_error("found a float with an illegal length code"),
},
Timestamp if !header.is_null() && length.value() <= 1 => {
return decoding_error("found a timestamp with length <= 1")
}
Struct if header.length_code == 1 && length.value() == 0 => {
return decoding_error("found an empty ordered struct")
}
_ => {}
};
Ok(length)
}
/// Interprets a type descriptor's `L` nibble (length) in the way used by most Ion types.
///
/// If `L` is...
/// * `f`: the value is a typed `null` and its length is `0`.
/// * `e`: the length is encoded as a `VarUInt` that follows the type descriptor.
/// * anything else: the `L` represents the actual length.
///
/// If successful, returns an `Ok(_)` that contains the [VarUInt] representation
/// of the value's length and consumes any additional bytes read.
pub fn read_length(&mut self, length_code: u8) -> IonResult<VarUInt> {
let length = match length_code {
length_codes::NULL => VarUInt::new(0, 0),
length_codes::VAR_UINT => self.read_var_uint()?,
magnitude => VarUInt::new(magnitude as usize, 0),
};
Ok(length)
}
}
/// These methods are only available to `BinaryBuffer`s that wrap a `Vec<u8>`. That is: buffers
/// that own a growable array into which more data can be appended.
// TODO: Instead of pinning this to Vec<u8>, we should define a trait that allows any owned/growable
// byte buffer type to be used.
impl BinaryBuffer<Vec<u8>> {
/// Moves any unread bytes to the front of the `Vec<u8>`, making room for more data at the tail.
/// This method should only be called when the bytes remaining in the buffer represent an
/// incomplete value; as such, the required `memcpy` should typically be quite small.
fn restack(&mut self) {
let remaining = self.remaining();
self.data.copy_within(self.start..self.end, 0);
self.start = 0;
self.end = remaining;
self.data.truncate(remaining);
}
/// Copies the provided bytes to end of the input buffer.
pub fn append_bytes(&mut self, bytes: &[u8]) {
self.restack();
self.data.extend_from_slice(bytes);
self.end += bytes.len();
}
/// Tries to read `length` bytes from `source`. Unlike [`append_bytes`](Self::append_bytes),
/// this method does not do any copying. A slice of the reader's buffer is handed to `source`
/// so it can be populated directly.
///
/// If successful, returns an `Ok(_)` containing the number of bytes that were actually read.
pub fn read_from<R: Read>(&mut self, mut source: R, length: usize) -> IonResult<usize> {
self.restack();
// Make sure that there are `length` bytes in the `Vec` beyond `self.end`.
self.reserve_capacity(length);
// Get a mutable slice to the first `length` bytes starting at `self.end`.
let read_buffer = &mut self.data.as_mut_slice()[self.end..(self.end + length)];
// Use that slice as our input buffer to read from the source.
let bytes_read = source.read(read_buffer)?;
// Update `self.end` to reflect that we have more data available to read.
self.end += bytes_read;
Ok(bytes_read)
}
/// Pushes `0u8` onto the end of the `Vec<u8>` until there are `length` bytes available beyond
/// `self.end`. This block of zeroed out bytes can then be used as an input I/O buffer for calls
/// to `read_from`. Applications should only use `read_from` when the buffer has been depleted,
/// which means that calls to this method should usually be no-ops.
fn reserve_capacity(&mut self, length: usize) {
// TODO: More sophisticated logic to avoid potentially reallocating multiple times per call.
// For now, it is unlikely that this would happen often.
let capacity = self.data.len() - self.end;
if capacity < length {
self.data.resize(self.data.len() + length - capacity, 0);
}
}
}
/// Constructs a [BinaryBuffer] from anything that can be viewed as a slice of bytes, including
/// `&[u8]`, `Vec<u8>`, `Buf`, etc.
impl<A: AsRef<[u8]>> From<A> for BinaryBuffer<A> {
fn from(data: A) -> Self {
let end = data.as_ref().len();
BinaryBuffer {
data,
start: 0,
end,
total_consumed: 0,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::IonError;
use num_traits::Num;
fn input_test<I: AsRef<[u8]> + Into<BinaryBuffer<I>>>(input: I) {
let mut input = input.into();
// We can peek at the first byte...
assert_eq!(input.peek_next_byte(), Some(b'f'));
// ...without modifying the input. Looking at the next 3 bytes still includes 'f'.
assert_eq!(input.peek_n_bytes(3), Some("foo".as_bytes()));
// Advancing the cursor by 1...
input.consume(1);
// ...causes next_byte() to return 'o'.
assert_eq!(input.peek_next_byte(), Some(b'o'));
input.consume(1);
assert_eq!(input.peek_next_byte(), Some(b'o'));
input.consume(1);
assert_eq!(input.peek_n_bytes(2), Some(" b".as_bytes()));
assert_eq!(input.peek_n_bytes(6), Some(" bar b".as_bytes()));
}
#[test]
fn string_test() {
input_test(String::from("foo bar baz"));
}
#[test]
fn slice_test() {
input_test("foo bar baz".as_bytes());
}
#[test]
fn vec_test() {
input_test(Vec::from("foo bar baz".as_bytes()));
}
#[test]
fn read_var_uint() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0111_1001, 0b0000_1111, 0b1000_0001]);
let var_uint = buffer.read_var_uint()?;
assert_eq!(3, var_uint.size_in_bytes());
assert_eq!(1_984_385, var_uint.value());
Ok(())
}
#[test]
fn read_var_uint_zero() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b1000_0000]);
let var_uint = buffer.read_var_uint()?;
assert_eq!(var_uint.size_in_bytes(), 1);
assert_eq!(var_uint.value(), 0);
Ok(())
}
#[test]
fn read_var_uint_two_bytes_max_value() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
let var_uint = buffer.read_var_uint()?;
assert_eq!(var_uint.size_in_bytes(), 2);
assert_eq!(var_uint.value(), 16_383);
Ok(())
}
#[test]
fn read_incomplete_var_uint() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0111_1001, 0b0000_1111]);
match buffer.read_var_uint() {
Err(IonError::Incomplete { .. }) => Ok(()),
other => panic!("expected IonError::Incomplete, but found: {other:?}"),
}
}
#[test]
fn read_var_uint_overflow_detection() {
let mut buffer = BinaryBuffer::new(&[
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b1111_1111,
]);
buffer
.read_var_uint()
.expect_err("This should have failed due to overflow.");
}
#[test]
fn read_var_int_zero() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b1000_0000]);
let var_int = buffer.read_var_int()?;
assert_eq!(var_int.size_in_bytes(), 1);
assert_eq!(var_int.value(), 0);
Ok(())
}
#[test]
fn read_negative_var_int() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0111_1001, 0b0000_1111, 0b1000_0001]);
let var_int = buffer.read_var_int()?;
assert_eq!(var_int.size_in_bytes(), 3);
assert_eq!(var_int.value(), -935_809);
Ok(())
}
#[test]
fn read_positive_var_int() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0011_1001, 0b0000_1111, 0b1000_0001]);
let var_int = buffer.read_var_int()?;
assert_eq!(var_int.size_in_bytes(), 3);
assert_eq!(var_int.value(), 935_809);
Ok(())
}
#[test]
fn read_var_int_two_byte_min() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
let var_int = buffer.read_var_int()?;
assert_eq!(var_int.size_in_bytes(), 2);
assert_eq!(var_int.value(), -8_191);
Ok(())
}
#[test]
fn read_var_int_two_byte_max() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0011_1111, 0b1111_1111]);
let var_int = buffer.read_var_int()?;
assert_eq!(var_int.size_in_bytes(), 2);
assert_eq!(var_int.value(), 8_191);
Ok(())
}
#[test]
fn read_var_int_overflow_detection() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b0111_1111,
0b1111_1111,
]);
buffer
.read_var_int()
.expect_err("This should have failed due to overflow.");
Ok(())
}
#[test]
fn read_one_byte_uint() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b1000_0000]);
let var_int = buffer.read_uint(buffer.remaining())?;
assert_eq!(var_int.size_in_bytes(), 1);
assert_eq!(var_int.value(), &UInt::U64(128));
Ok(())
}
#[test]
fn read_two_byte_uint() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
let var_int = buffer.read_uint(buffer.remaining())?;
assert_eq!(var_int.size_in_bytes(), 2);
assert_eq!(var_int.value(), &UInt::U64(32_767));
Ok(())
}
#[test]
fn read_three_byte_uint() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0011_1100, 0b1000_0111, 0b1000_0001]);
let var_int = buffer.read_uint(buffer.remaining())?;
assert_eq!(var_int.size_in_bytes(), 3);
assert_eq!(var_int.value(), &UInt::U64(3_966_849));
Ok(())
}
#[test]
fn test_read_ten_byte_uint() -> IonResult<()> {
let data = vec![0xFFu8; 10];
let mut buffer = BinaryBuffer::new(data);
let uint = buffer.read_uint(buffer.remaining())?;
assert_eq!(uint.size_in_bytes(), 10);
assert_eq!(
uint.value(),
&UInt::BigUInt(BigUint::from_str_radix("ffffffffffffffffffff", 16).unwrap())
);
Ok(())
}
#[test]
fn test_read_uint_too_large() {
let mut buffer = Vec::with_capacity(MAX_UINT_SIZE_IN_BYTES + 1);
buffer.resize(MAX_UINT_SIZE_IN_BYTES + 1, 1);
let mut buffer = BinaryBuffer::new(buffer);
let _uint = buffer
.read_uint(buffer.remaining())
.expect_err("This exceeded the configured max UInt size.");
}
#[test]
fn read_int_negative_zero() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b1000_0000]); // Negative zero
let int = buffer.read_int(buffer.remaining())?;
assert_eq!(int.size_in_bytes(), 1);
assert_eq!(int.value(), &Int::I64(0));
assert!(int.is_negative_zero());
Ok(())
}
#[test]
fn read_int_positive_zero() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0000_0000]); // Negative zero
let int = buffer.read_int(buffer.remaining())?;
assert_eq!(int.size_in_bytes(), 1);
assert_eq!(int.value(), &Int::I64(0));
assert!(!int.is_negative_zero());
Ok(())
}
#[test]
fn read_int_length_zero() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[]); // Negative zero
let int = buffer.read_int(buffer.remaining())?;
assert_eq!(int.size_in_bytes(), 0);
assert_eq!(int.value(), &Int::I64(0));
assert!(!int.is_negative_zero());
Ok(())
}
#[test]
fn read_two_byte_negative_int() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b1111_1111, 0b1111_1111]);
let int = buffer.read_int(buffer.remaining())?;
assert_eq!(int.size_in_bytes(), 2);
assert_eq!(int.value(), &Int::I64(-32_767));
Ok(())
}
#[test]
fn read_two_byte_positive_int() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0111_1111, 0b1111_1111]);
let int = buffer.read_int(buffer.remaining())?;
assert_eq!(int.size_in_bytes(), 2);
assert_eq!(int.value(), &Int::I64(32_767));
Ok(())
}
#[test]
fn read_three_byte_negative_int() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b1011_1100, 0b1000_0111, 0b1000_0001]);
let int = buffer.read_int(buffer.remaining())?;
assert_eq!(int.size_in_bytes(), 3);
assert_eq!(int.value(), &Int::I64(-3_966_849));
Ok(())
}
#[test]
fn read_three_byte_positive_int() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(&[0b0011_1100, 0b1000_0111, 0b1000_0001]);
let int = buffer.read_int(buffer.remaining())?;
assert_eq!(int.size_in_bytes(), 3);
assert_eq!(int.value(), &Int::I64(3_966_849));
Ok(())
}
#[test]
fn read_int_overflow() -> IonResult<()> {
let mut buffer = BinaryBuffer::new(vec![1; MAX_INT_SIZE_IN_BYTES + 1]); // Negative zero
buffer
.read_int(buffer.remaining())
.expect_err("This exceeded the configured max Int size.");
Ok(())
}
#[test]
fn validate_read_from_size() -> IonResult<()> {
// This test validates that the size of data we wish to read is actually honored by
// read_from. A bug existed where the sub-slice of the buffer was calculated incorrectly,
// leading to the potential for failed reads, or increasingly smaller reads.
let mut buffer = BinaryBuffer::new(vec![0; 10]);
let new_data: &[u8] = &[0; 11];
let bytes_read = buffer.read_from(new_data, 11)?;
assert_eq!(bytes_read, 11);
Ok(())
}
}