1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
use std::io::Write;
use std::ops::Range;
use std::{io, mem};

use bytes::BufMut;
use num_bigint::Sign;
use num_traits::Zero;

use crate::binary::constants::v1_0::IVM;
use crate::binary::uint::DecodedUInt;
use crate::binary::var_uint::VarUInt;
use crate::raw_symbol_token_ref::{AsRawSymbolTokenRef, RawSymbolTokenRef};
use crate::result::{illegal_operation, IonResult};
use crate::types::{ContainerType, Decimal, SymbolId, Timestamp};
use crate::writer::IonWriter;
use crate::{Int, IonType};

use super::decimal::DecimalBinaryEncoder;
use super::timestamp::TimestampBinaryEncoder;
use super::uint;

pub struct RawBinaryWriterBuilder {
    // Nothing yet
}

impl RawBinaryWriterBuilder {
    pub fn new() -> Self {
        RawBinaryWriterBuilder {}
    }

    /// Creates a new RawBinaryWriter that will write its encoded output to the provided
    /// io::Write sink.
    pub fn build<W: Write>(self, out: W) -> IonResult<RawBinaryWriter<W>> {
        let mut levels = Vec::with_capacity(INITIAL_ENCODING_LEVELS_CAPACITY);
        // Create an EncodingLevel to represent the top level. It has no annotations.
        levels.push(EncodingLevel::new(ContainerType::TopLevel, None, 0, 0));
        // Create an empty IoRange for top-level leading scalar values.
        let mut io_ranges = Vec::with_capacity(INITIAL_IO_RANGE_CAPACITY);
        io_ranges.push(0usize..0);
        let raw_binary_writer = RawBinaryWriter {
            buffer: Vec::with_capacity(INITIAL_ENCODING_BUFFER_CAPACITY),
            io_ranges,
            levels,
            out,
            annotations_all_levels: Vec::with_capacity(INITIAL_ANNOTATIONS_CAPACITY),
            num_annotations_current_value: 0,
            field_id: None,
            contiguous_encoding: Vec::with_capacity(INITIAL_ENCODING_BUFFER_CAPACITY),
        };

        // Currently, this method cannot fail. However, the other builder APIs return an
        // IonResult, so we've followed suit here.
        Ok(raw_binary_writer)
    }
}

impl Default for RawBinaryWriterBuilder {
    fn default() -> Self {
        RawBinaryWriterBuilder::new()
    }
}

// Ion's length prefixing requires that elements in a stream be encoded out of order.
// For example, to write the annotated list $ion::["foo", "bar"], the writer must:
//   1. Encode "foo"
//   2. Encode "bar"
//   3. Use the combined length of "foo" and "bar" to encode the header for the list
//   4. Encode the annotation sequence '$ion'
//   5. Encode the length of the annotation sequence
//   5. Use the combined length of 'foo' and the list to write the annotations wrapper
//
// The BinarySystemWriter encodes these out-of-order byte sequences in a temporary buffer and tracks
// which slices of the buffer should be written out first by maintaining a queue of Range<usize>
// entries. These entries are referred to as `IoRange`s, as they are the buffer ranges that
// are actually sent to `io::write` whenever `flush()` is called.
type IoRange = Range<usize>;

// When encoding the above example data, the buffer with out-of-order byte sequences might look
// like this:
//
// [offset] 0             4             8             12   13   14   15
// buffer : e0 01 00 ea | 83 66 6f 6f | 83 62 61 72 | b8 | 81 | 81 | eb
//          ^             ^             ^             ^    ^    ^    ^-- 11-byte annotation wrapper
//          |             |             |             |    |    +------- Annotation seq length 1
//          |             |             |             |    +------------ Annotation 1 ('$ion')
//          |             |             |             +----------------- 8-byte list header
//          |             |             +------------------------------- 3-byte string "bar"
//          |             +--------------------------------------------- 3-byte string "foo"
//          +----------------------------------------------------------- Ion 1.0 version marker
//
// Meanwhile, the writer's IoRange queue would look like this:
//
//     0..4, 15..16, 14..15, 13..14, 12..13, 4..12
//
// Ranges have inclusive starts and exclusive ends, so the range 14..15 includes a single byte at
// index 14.
//
// When the writer's `flush()` method is called, each IoRange is turned into a slice of the buffer
// and written to the io::Write sink.
//
//     e0 01 00 ea eb 81 81 b8 83 66 6f 6f 83 62 61 72

// Stores information about each level into which the writer has stepped, including its
// annotations, field_id, and container type.
#[derive(Debug)]
struct EncodingLevel {
    container_type: ContainerType,
    field_id: Option<SymbolId>,
    // Annotations are stored in a common Vec on the BinarySystemWriter. Each EncodingLevel tracks
    // how many annotations it had, allowing that Vec to be treated as a stack. Stepping into
    // a new level pushes `num_annotations` symbol IDs onto the Vec and stepping out pops
    // `num_annotations` back off the stack.
    num_annotations: u8,
    // Index of the IoRange for this container's type descriptor and length. When the writer
    // steps out of this level, the type descriptor IoRange will be retrieved and populated.
    td_io_range_index: usize,
}

impl EncodingLevel {
    fn new(
        container_type: ContainerType,
        field_id: Option<SymbolId>,
        num_annotations: u8,
        td_io_range_index: usize,
    ) -> EncodingLevel {
        EncodingLevel {
            container_type,
            field_id,
            num_annotations,
            td_io_range_index,
        }
    }

    // Visits all of the IoRanges belonging to this EncodingLevel and notes their total length.
    // This length will be written out as a length prefix for the container.
    fn calculate_final_size(&self, io_ranges: &mut [Range<usize>]) -> usize {
        io_ranges[self.td_io_range_index..]
            .iter()
            .map(|r| r.len())
            .sum()
    }
}

/// A system-level streaming binary Ion writer. This writer does not provide symbol table
/// management; symbol-related operations (e.g. setting field IDs and annotations or writing symbol
/// values) require a valid symbol ID to be provided by the caller.
///
/// To produce a valid binary Ion stream, the writer MUST call
/// [RawBinaryWriter::write_ion_version_marker] before writing any data.
#[derive(Debug)]
pub struct RawBinaryWriter<W: Write> {
    // A byte buffer to encode individual components of the stream.
    buffer: Vec<u8>,
    // Slices of the buffer to write out in order when flush() is called.
    io_ranges: Vec<IoRange>,
    // Stack for tracking step_in/step_out
    levels: Vec<EncodingLevel>,
    // An io::Write implementation to be used as a sink for encoded data.
    out: W,
    // The field ID of the current value. If the writer is not in a struct, this will be None.
    field_id: Option<SymbolId>,
    // A Vec into which all EncodingLevels can store their annotations. Sharing this Vec avoids
    // allocating new space for each container the writer steps into.
    annotations_all_levels: Vec<SymbolId>,
    // The number of annotations at the tail of `annotations_all_levels` belonging to the current
    // value.
    num_annotations_current_value: u8,
    // Scratch space for the flush() method to rearrange the contents of `buffer` before writing
    // the data to `out`.
    contiguous_encoding: Vec<u8>,
}

// The largest possible 'L' (length) value that can be written directly in a type descriptor byte.
// Larger length values will need to be written as a VarUInt following the type descriptor.
pub(crate) const MAX_INLINE_LENGTH: usize = 13;

// The number of IoRanges needed to write out an annotations wrapper, not including the IoRange
// belonging to the wrapped value. (One IoRange for each of: the annotations sequence, the length
// of the annotations sequence, and the annotations wrapper header.)
const IO_RANGES_PER_ANNOTATION_WRAPPER: usize = 3;

// These values are initial sizes for various `Vec`s that will be resized if necessary.
const INITIAL_ENCODING_BUFFER_CAPACITY: usize = 8 * 1024;
const INITIAL_ENCODING_LEVELS_CAPACITY: usize = 16;
const INITIAL_IO_RANGE_CAPACITY: usize = 128;
const INITIAL_ANNOTATIONS_CAPACITY: usize = 4;

impl<W: Write> RawBinaryWriter<W> {
    // Uses the provided closure to encode data to the buffer. Returns the range of the buffer
    // now occupied by the encoded bytes.
    #[inline]
    fn encode_to_buffer(
        &mut self,
        mut encode_fn: impl FnMut(&mut Self) -> IonResult<()>,
    ) -> IonResult<IoRange> {
        let start = self.buffer.len();
        encode_fn(self)?;
        let end = self.buffer.len();
        Ok(start..end)
    }

    // Returns true if the last container that the writer stepped into was a struct; false otherwise.
    #[inline]
    fn is_in_struct(&self) -> bool {
        self.levels
            .last()
            .map(|level| level.container_type == ContainerType::Struct)
            .unwrap_or(false)
    }

    // Modifies the last IoRange to include the next `number_of_bytes`.
    // Used when writing scalars, which can always extend the most recent range instead of adding
    // a new one.
    #[inline]
    fn extend_last_range(&mut self, number_of_bytes: usize) {
        let last_range = self
            .io_ranges
            .last_mut()
            .expect("io_ranges unexpectedly empty.");
        last_range.end += number_of_bytes;
    }

    // Handles before-and-after tasks common to writing all non-container values, like encoding
    // field IDs and annotation wrappers.
    fn write_scalar(
        &mut self,
        mut write_fn: impl FnMut(&mut Vec<u8>) -> IonResult<()>,
    ) -> IonResult<()> {
        // If we're in a struct, encode the field ID first.
        if self.is_in_struct() {
            let field_id = self.expect_field_id()? as u64;
            let bytes_written = VarUInt::write_u64(&mut self.buffer, field_id)?;
            self.extend_last_range(bytes_written);
            self.field_id = None;
        }

        if self.has_annotations() {
            return self.encode_annotated_scalar(write_fn);
        }

        let encoded_range = self.encode_to_buffer(|writer| write_fn(&mut writer.buffer))?;
        self.extend_last_range(encoded_range.len());

        Ok(())
    }

    // Uses the provided closure to encode a scalar value, then encodes the annotation wrapper
    // based on the encoded value's length and the configured annotations sequence.
    fn encode_annotated_scalar(
        &mut self,
        mut scalar_write_fn: impl FnMut(&mut Vec<u8>) -> IonResult<()>,
    ) -> IonResult<()> {
        // Encode the scalar into the buffer, but do not push the IoRange yet.
        let value_io_range: IoRange =
            self.encode_to_buffer(|writer| scalar_write_fn(&mut writer.buffer))?;

        // Create ranges that will ultimately point to the encoded components of the annotations
        // wrapper for the value.
        let mut header_io_range: Range<usize> = 0..0;
        let mut annotations_seq_length_io_range: Range<usize> = 0..0;
        let mut annotations_seq_io_range: Range<usize> = 0..0;

        // Using the encoded length of the value, encode the annotations wrapper and populate
        // the IO ranges we created above.
        self.encode_annotation_wrapper(
            &mut header_io_range,
            &mut annotations_seq_length_io_range,
            &mut annotations_seq_io_range,
            value_io_range.len(),
        )?;

        // Push the IO ranges in the correct order so the encoded bytes will be written in the
        // correct order when the user calls `flush()`.
        self.io_ranges.extend_from_slice(&[
            header_io_range,
            annotations_seq_length_io_range,
            annotations_seq_io_range,
            value_io_range,
        ]);

        self.push_empty_io_range();

        Ok(())
    }

    // Writes the annotations wrapper for a value of a given length. Callers should encode the
    // value to the buffer, call this method with the value's encoded length, then push
    // the populated IoRanges in the necessary order.
    fn encode_annotation_wrapper(
        &mut self,
        header_io_range: &mut IoRange,
        annotations_seq_length_io_range: &mut IoRange,
        annotations_seq_io_range: &mut IoRange,
        wrapped_value_length: usize,
    ) -> IonResult<()> {
        // Encode the sequence of annotations and make a note of the encoded length.
        // The return value of mem::replace is the original range value, which is always 0..0.
        // We can safely ignore it.
        let _ = mem::replace(
            annotations_seq_io_range,
            self.encode_to_buffer(|writer| {
                let range = writer.current_value_annotations_range();
                let annotations = &writer.annotations_all_levels[range];
                for annotation_id in annotations {
                    VarUInt::write_u64(&mut writer.buffer, *annotation_id as u64)?;
                }
                Ok(())
            })?,
        );
        let annotation_sequence_encoded_length = annotations_seq_io_range.len();

        // Encode the length of the annotations sequence as a VarUInt.
        let _ = mem::replace(
            annotations_seq_length_io_range,
            self.encode_to_buffer(|writer| {
                let _num_bytes = VarUInt::write_u64(
                    &mut writer.buffer,
                    annotation_sequence_encoded_length as u64,
                )?;
                Ok(())
            })?,
        );

        // The length of the wrapper is the sum total of:
        // 1. The length of the encoded annotations sequence
        // 2. The length of the VarUInt representation of #1 above.
        // 3. The length of the value being annotated.
        let wrapper_length = annotations_seq_io_range.len()
            + annotations_seq_length_io_range.len()
            + wrapped_value_length;

        // Now that we know the wrapper length, encode the annotation wrapper header.
        let _ = mem::replace(
            header_io_range,
            self.encode_to_buffer(|writer| {
                let type_descriptor: u8;
                if wrapper_length <= MAX_INLINE_LENGTH {
                    // Use inline length encoding
                    type_descriptor = 0xE0 | wrapper_length as u8;
                    writer.buffer.push(type_descriptor);
                } else {
                    type_descriptor = 0xEE; // VarUInt length encoding
                    writer.buffer.push(type_descriptor);
                    VarUInt::write_u64(&mut writer.buffer, wrapper_length as u64)?;
                }
                Ok(())
            })?,
        );

        self.clear_annotations();
        Ok(())
    }

    // Returns the range of annotations in `annotations_all_levels` that belong to the current value.
    // This function originally borrowed a slice of `annotations_all_levels`, but this lead to ownership
    // conflicts; all of `self` would remain borrowed. Returning the range instead allows the compiler
    // to see that only `self.annotations_all_levels` is being borrowed.
    #[inline]
    fn current_value_annotations_range(&self) -> Range<usize> {
        let end = self.annotations_all_levels.len();
        let start = end - self.num_annotations_current_value as usize;
        start..end
    }

    #[inline]
    pub fn clear_annotations(&mut self) {
        if self.num_annotations_current_value > 0 {
            let new_length =
                self.annotations_all_levels.len() - self.num_annotations_current_value as usize;
            self.annotations_all_levels.truncate(new_length);
            self.num_annotations_current_value = 0;
        }
    }

    #[inline]
    pub fn has_annotations(&self) -> bool {
        self.num_annotations_current_value > 0
    }

    pub fn write_symbol_id(&mut self, symbol_id: SymbolId) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            const SYMBOL_BUFFER_SIZE: usize = mem::size_of::<u64>();
            let mut buffer = [0u8; SYMBOL_BUFFER_SIZE];
            let mut writer = io::Cursor::new(&mut buffer).writer();
            let encoded_length = DecodedUInt::write_u64(&mut writer, symbol_id as u64)?;

            let type_descriptor: u8;
            if encoded_length <= MAX_INLINE_LENGTH {
                type_descriptor = 0x70 | encoded_length as u8;
                enc_buffer.push(type_descriptor);
            } else {
                type_descriptor = 0x7E;
                enc_buffer.push(type_descriptor);
                VarUInt::write_u64(enc_buffer, encoded_length as u64)?;
            }
            let raw_buffer = writer.into_inner().into_inner();
            enc_buffer.extend_from_slice(&raw_buffer[..encoded_length]);
            Ok(())
        })
    }

    fn write_lob(enc_buffer: &mut Vec<u8>, value: &[u8], type_code: u8) -> IonResult<()> {
        let encoded_length = value.len();
        let type_descriptor: u8;
        if encoded_length <= MAX_INLINE_LENGTH {
            type_descriptor = type_code | encoded_length as u8;
            enc_buffer.push(type_descriptor);
        } else {
            type_descriptor = type_code | 0x0E;
            enc_buffer.push(type_descriptor);
            VarUInt::write_u64(enc_buffer, encoded_length as u64)?;
        }
        enc_buffer.extend_from_slice(value);
        Ok(())
    }

    // Creates an empty IoRange starting from the next unoccupied byte in the buffer.
    fn push_empty_io_range(&mut self) {
        let next_byte_index = self.buffer.len();
        self.io_ranges.push(next_byte_index..next_byte_index);
    }

    pub fn set_field_id(&mut self, field_id: SymbolId) {
        self.field_id = Some(field_id);
    }

    // Called when the writer is in a struct and a missing field ID is an error
    fn expect_field_id(&self) -> IonResult<usize> {
        match self.field_id {
            Some(field_id) => Ok(field_id),
            None => {
                illegal_operation("`set_field_id()` must be called before each field in a struct.")
            }
        }
    }

    // When step_out() is called and the container has been written, this function uses the encoded
    // length to write the container's annotations wrapper.
    fn encode_container_annotations(
        &mut self,
        td_io_range_index: usize,
        container_size: usize,
    ) -> IonResult<()> {
        // Create IoRanges that will ultimately point to the encoded components of the annotations
        // wrapper for the value.
        let mut header_io_range: Range<usize> = 0..0;
        let mut annotations_seq_length_io_range: Range<usize> = 0..0;
        let mut annotations_seq_io_range: Range<usize> = 0..0;

        // Encode the annotation wrapper, populating the ranges above in the process.
        self.encode_annotation_wrapper(
            &mut header_io_range,
            &mut annotations_seq_length_io_range,
            &mut annotations_seq_io_range,
            container_size,
        )?;

        // Populate each of the reserved annotation IO ranges using the results from above.
        let header_io_range_index = td_io_range_index - IO_RANGES_PER_ANNOTATION_WRAPPER;
        let _ = mem::replace(&mut self.io_ranges[header_io_range_index], header_io_range);

        let annotations_seq_length_io_range_index = header_io_range_index + 1;
        let _ = mem::replace(
            &mut self.io_ranges[annotations_seq_length_io_range_index],
            annotations_seq_length_io_range,
        );

        let annotations_seq_io_range_index = header_io_range_index + 2;
        let _ = mem::replace(
            &mut self.io_ranges[annotations_seq_io_range_index],
            annotations_seq_io_range,
        );

        Ok(())
    }

    /// Returns a reference to the underlying io::Write implementation.
    pub fn output(&self) -> &W {
        &self.out
    }

    /// Returns a mutable reference to the underlying io::Write implementation. Modifying the
    /// underlying sink is an inherently risky operation and can result in unexpected behavior.
    /// It is not recommended for most use cases.
    pub fn output_mut(&mut self) -> &mut W {
        &mut self.out
    }

    fn reserve_io_ranges_for_annotations(&mut self) {
        // Annotations type descriptor and wrapper length
        self.push_empty_io_range();
        // The VarUInt length of the encoded sequence of annotations
        self.push_empty_io_range();
        // The encoded sequence of annotations
        self.push_empty_io_range();
    }

    pub fn add_annotation<A: AsRawSymbolTokenRef>(&mut self, annotation: A) {
        let symbol_id = match annotation.as_raw_symbol_token_ref() {
            RawSymbolTokenRef::SymbolId(symbol_id) => symbol_id,
            RawSymbolTokenRef::Text(text) => panic!(
                "The RawBinaryWriter can only accept symbol ID annotations, not text ('{text}')."
            ),
        };
        self.annotations_all_levels.push(symbol_id);
        self.num_annotations_current_value += 1;
    }
}

impl<W: Write> IonWriter for RawBinaryWriter<W> {
    type Output = W;

    fn ion_version(&self) -> (u8, u8) {
        (1, 0)
    }

    fn write_ion_version_marker(&mut self, major: u8, minor: u8) -> IonResult<()> {
        if self.depth() > 0 {
            return illegal_operation("can only write an IVM at the top level");
        }
        if major == 1 && minor == 0 {
            return Ok(self.out.write_all(&IVM)?);
        }
        illegal_operation("Only Ion 1.0 is supported.")
    }

    fn supports_text_symbol_tokens(&self) -> bool {
        // In Ion 1.0, the binary format requires that field names, annotations, and symbol values
        // be encoded as symbol IDs. The raw writer does not have a symbol table and so cannot
        // convert a String to a symbol ID.
        false
    }

    fn set_annotations<I, A>(&mut self, annotations: I)
    where
        A: AsRawSymbolTokenRef,
        I: IntoIterator<Item = A>,
    {
        self.clear_annotations();
        for annotation in annotations {
            self.add_annotation(annotation);
        }
    }

    /// Writes an Ion null of the specified type.
    fn write_null(&mut self, ion_type: IonType) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            let byte: u8 = match ion_type {
                IonType::Null => 0x0F,
                IonType::Bool => 0x1F,
                IonType::Int => 0x2F,
                IonType::Float => 0x4F,
                IonType::Decimal => 0x5F,
                IonType::Timestamp => 0x6F,
                IonType::Symbol => 0x7F,
                IonType::String => 0x8F,
                IonType::Clob => 0x9F,
                IonType::Blob => 0xAF,
                IonType::List => 0xBF,
                IonType::SExp => 0xCF,
                IonType::Struct => 0xDF,
            };
            enc_buffer.push(byte);
            Ok(())
        })
    }

    /// Writes an Ion boolean with the specified value.
    fn write_bool(&mut self, value: bool) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            let byte: u8 = if value { 0x11 } else { 0x10 };
            enc_buffer.push(byte);
            Ok(())
        })
    }

    /// Writes an Ion integer with the specified value.
    fn write_i64(&mut self, value: i64) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            // Get the absolute value of the i64 and store it in a u64.
            let magnitude: u64 = value.unsigned_abs();
            let encoded = uint::encode_u64(magnitude);
            let bytes_to_write = encoded.as_bytes();

            // The encoded length will never be larger than 8 bytes, so it will
            // always fit in the Int's type descriptor byte.
            let encoded_length = bytes_to_write.len();
            let type_descriptor: u8 = if value >= 0 {
                0x20 | (encoded_length as u8)
            } else {
                0x30 | (encoded_length as u8)
            };
            enc_buffer.push(type_descriptor);
            enc_buffer.extend_from_slice(bytes_to_write);

            Ok(())
        })
    }

    /// Writes an Ion integer with the specified value.
    fn write_int(&mut self, value: &Int) -> IonResult<()> {
        // If the `value` is an `i64`, use `write_i64` and return.
        let value = match value {
            Int::I64(i) => return self.write_i64(*i),
            Int::BigInt(i) => i,
        };

        // From here on, `value` is a `BigInt`.
        self.write_scalar(|enc_buffer| {
            if value.is_zero() {
                enc_buffer.push(0x20);
                return Ok(());
            }

            let (sign, magnitude_be_bytes) = value.to_bytes_be();

            let mut type_descriptor: u8 = match sign {
                Sign::Plus | Sign::NoSign => 0x20,
                Sign::Minus => 0x30,
            };

            let encoded_length = magnitude_be_bytes.len();
            if encoded_length <= 13 {
                type_descriptor |= encoded_length as u8;
                enc_buffer.push(type_descriptor);
            } else {
                type_descriptor |= 0xEu8;
                enc_buffer.push(type_descriptor);
                VarUInt::write_u64(enc_buffer, encoded_length as u64)?;
            }

            enc_buffer.extend_from_slice(magnitude_be_bytes.as_slice());

            Ok(())
        })
    }

    /// Writes an Ion float with the specified value.
    fn write_f32(&mut self, value: f32) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            if value == 0f32 && !value.is_sign_negative() {
                enc_buffer.push(0x40);
                return Ok(());
            }

            enc_buffer.push(0x44);
            enc_buffer.extend_from_slice(&value.to_be_bytes());
            Ok(())
        })
    }

    /// Writes an Ion float with the specified value.
    fn write_f64(&mut self, value: f64) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            if value == 0f64 && !value.is_sign_negative() {
                enc_buffer.push(0x40);
                return Ok(());
            }

            enc_buffer.push(0x48);
            enc_buffer.extend_from_slice(&value.to_be_bytes());
            Ok(())
        })
    }

    /// Writes an Ion decimal with the specified value.
    fn write_decimal(&mut self, value: &Decimal) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            let _ = enc_buffer.encode_decimal_value(value)?;
            Ok(())
        })
    }

    /// Writes an Ion timestamp with the specified value.
    fn write_timestamp(&mut self, value: &Timestamp) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            let _ = enc_buffer.encode_timestamp_value(value)?;
            Ok(())
        })
    }

    fn write_symbol<A: AsRawSymbolTokenRef>(&mut self, value: A) -> IonResult<()> {
        match value.as_raw_symbol_token_ref() {
            RawSymbolTokenRef::SymbolId(sid) => self.write_symbol_id(sid),
            RawSymbolTokenRef::Text(_text) => {
                illegal_operation("The RawBinaryWriter cannot write text symbols.")
            }
        }
    }

    fn write_string<S: AsRef<str>>(&mut self, value: S) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            let text: &str = value.as_ref();
            let encoded_length = text.len(); // The number of utf8 bytes

            let type_descriptor: u8;
            if encoded_length <= MAX_INLINE_LENGTH {
                type_descriptor = 0x80 | encoded_length as u8;
                enc_buffer.push(type_descriptor);
            } else {
                type_descriptor = 0x8E;
                enc_buffer.push(type_descriptor);
                VarUInt::write_u64(enc_buffer, encoded_length as u64)?;
            }
            enc_buffer.extend_from_slice(text.as_bytes());
            Ok(())
        })
    }

    fn write_clob<A: AsRef<[u8]>>(&mut self, value: A) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            let bytes: &[u8] = value.as_ref();
            // The clob type descriptor's high nibble is type code 9
            RawBinaryWriter::<W>::write_lob(enc_buffer, bytes, 0x90)
        })
    }

    fn write_blob<A: AsRef<[u8]>>(&mut self, value: A) -> IonResult<()> {
        self.write_scalar(|enc_buffer| {
            let bytes: &[u8] = value.as_ref();
            // The blob type descriptor's high nibble is type code 10
            RawBinaryWriter::<W>::write_lob(enc_buffer, bytes, 0xA0)
        })
    }

    /// Starts a container of the specified Ion type. If `ion_type` is not a List, SExpression,
    /// or Struct, `step_in` will return an Err.
    fn step_in(&mut self, ion_type: IonType) -> IonResult<()> {
        use IonType::*;
        let container_type = match ion_type {
            List => ContainerType::List,
            SExp => ContainerType::SExpression,
            Struct => ContainerType::Struct,
            _ => return illegal_operation("Cannot step into a scalar Ion type."),
        };

        // If this is a field in a struct, encode the field ID at the end of the last IO range.
        if self.is_in_struct() {
            let field_id_io_range = self.encode_to_buffer(|writer| {
                let field_id = writer.expect_field_id()? as u64;
                VarUInt::write_u64(&mut writer.buffer, field_id)?;
                Ok(())
            })?;
            self.extend_last_range(field_id_io_range.len());
        }

        // If the container is annotated, reserve IO ranges to hold the annotations
        // wrapper components that will ultimately precede the value.
        if self.num_annotations_current_value > 0 {
            self.reserve_io_ranges_for_annotations();
        }

        // An empty placeholder range that we'll fill in during step_out(). It will point to the
        // type descriptor byte and any length bytes.
        let header_io_range_index = self.io_ranges.len();
        self.push_empty_io_range();

        let new_encoding_level = EncodingLevel::new(
            container_type,
            self.field_id,
            self.num_annotations_current_value,
            header_io_range_index,
        );
        self.num_annotations_current_value = 0;
        self.levels.push(new_encoding_level);

        self.push_empty_io_range(); // Scalars can append to this
        Ok(())
    }

    fn set_field_name<A: AsRawSymbolTokenRef>(&mut self, name: A) {
        if self.parent_type() != Some(IonType::Struct) {
            panic!("Attempted to set field name when the writer was not in a struct.");
        }
        match name.as_raw_symbol_token_ref() {
            RawSymbolTokenRef::SymbolId(sid) => self.set_field_id(sid),
            RawSymbolTokenRef::Text(text) => panic!(
                "The RawBinaryWriter can only accept Symbol ID field names, not text ('{text}')."
            ),
        }
    }

    fn parent_type(&self) -> Option<IonType> {
        // `self.levels` always has at least one value: the top level.
        // This means we can `unwrap()` the last value safely.
        match self.levels.last().unwrap().container_type {
            ContainerType::TopLevel => None,
            ContainerType::Struct => Some(IonType::Struct),
            ContainerType::List => Some(IonType::List),
            ContainerType::SExpression => Some(IonType::SExp),
        }
    }

    fn depth(&self) -> usize {
        // The top level is always present
        self.levels.len() - 1
    }

    /// Ends the current container. If the writer is at the top level, `step_out` will return an Err.
    fn step_out(&mut self) -> IonResult<()> {
        if self.levels.len() <= 1 {
            return illegal_operation(
                "Cannot call step_out() unless the writer is positioned within a container.",
            );
        }
        self.clear_annotations();
        let container = self.levels.pop().unwrap();
        self.num_annotations_current_value = container.num_annotations;
        self.field_id = container.field_id;
        let container_size = container.calculate_final_size(&mut self.io_ranges);

        use crate::types::ContainerType::*;
        let mut type_descriptor: u8 = match container.container_type {
            List => 0xB0,
            SExpression => 0xC0,
            Struct => 0xD0,
            _ => return illegal_operation("Cannot step into a scalar Ion type."),
        };

        // Encode the type descriptor byte, and optional length
        let header_io_range = self.encode_to_buffer(|writer| {
            if container_size <= MAX_INLINE_LENGTH {
                type_descriptor |= container_size as u8;
                writer.buffer.push(type_descriptor);
            } else {
                type_descriptor |= 0x0E; // VarUInt encoding
                writer.buffer.push(type_descriptor);
                VarUInt::write_u64(&mut writer.buffer, container_size as u64)?;
            }
            Ok(())
        })?;

        // Now that we know how large the container's header is, add its length to the
        // calculated container size.
        let container_size = container_size + header_io_range.len();

        // Retrieve this container's header byte range from io_ranges
        let td_io_range = self
            .io_ranges
            .get_mut(container.td_io_range_index)
            .expect("Missing type descriptor IO range for {}");

        // Update the IO range to point to the bytes we just encoded
        let _ = mem::replace(td_io_range, header_io_range);

        // If this container had annotations, retrieve the IO ranges that were reserved to store
        // them and use them to encode the annotations wrapper.
        if container.num_annotations > 0 {
            self.encode_container_annotations(container.td_io_range_index, container_size)?;
        }

        // Create an empty IO Range that will hold the bytes of any scalar values that will follow
        // now that we've stepped out.
        self.push_empty_io_range();

        Ok(())
    }

    /// Writes any buffered data to the sink. This method can only be called when the writer is at
    /// the top level.
    fn flush(&mut self) -> IonResult<()> {
        if self.depth() > 0 {
            return illegal_operation(
                "Cannot call flush() while the writer is positioned within a container.",
            );
        }

        // We don't call finalize() on the top level because it has no length prefix.
        // Instead, its io_range represents the bytes of any leading scalar values.

        // For each io_range in order, copy the specified bytes into a contiguous buffer that
        // we'll write to output.

        for io_range in self.io_ranges.drain(..) {
            self.contiguous_encoding
                .extend_from_slice(&self.buffer[io_range]);
        }

        // TODO: When io::Write#is_write_vectored[1] or trait specialization[2] stabilize,
        //      we can use vectored writes instead of making a contiguous encoding
        //      buffer.
        //      [1] https://github.com/rust-lang/rust/issues/69941
        //      [2] https://github.com/rust-lang/rust/issues/31844

        self.out.write_all(self.contiguous_encoding.as_slice())?;

        self.contiguous_encoding.clear();
        self.push_empty_io_range();

        Ok(())
    }

    fn output(&self) -> &Self::Output {
        &self.out
    }

    fn output_mut(&mut self) -> &mut Self::Output {
        &mut self.out
    }
}

#[cfg(test)]
mod writer_tests {
    use std::fmt::Debug;

    use crate::StreamItem;

    use rstest::*;

    use super::*;
    use crate::raw_symbol_token::{local_sid_token, RawSymbolToken};
    use crate::reader::{Reader, ReaderBuilder};
    use crate::types::{Blob, Clob, Symbol};
    use crate::IonReader;
    use num_bigint::BigInt;
    use num_traits::Float;
    use std::convert::TryInto;
    use std::str::FromStr;

    type TestWriter<'a> = RawBinaryWriter<&'a mut Vec<u8>>;
    type TestReader<'a> = Reader<'a>;

    /// A reusable test outline for verifying BinarySystemWriter behavior.
    fn binary_writer_test(
        mut write_fn: impl FnMut(&mut TestWriter) -> IonResult<()>,
        mut read_fn: impl FnMut(&mut TestReader) -> IonResult<()>,
    ) -> IonResult<()> {
        // Create a BinarySystemWriter that writes to a byte vector.
        let mut buffer = vec![];
        let mut writer = RawBinaryWriterBuilder::new().build(&mut buffer)?;
        writer.write_ion_version_marker(1, 0)?;

        // Call the user's writing function
        write_fn(&mut writer)?;
        writer.flush()?;

        // Create a BinaryReader that reads from the BinarySystemWriter's output.
        let data = buffer.as_slice();
        let mut reader = ReaderBuilder::new().build(data)?;

        // Call the user's verification function
        read_fn(&mut reader)
    }

    /// A reusable test outline for verifying BinarySystemWriter scalar encoding behavior.
    fn binary_writer_scalar_test<T, U>(
        values: &[T],
        ion_type: IonType,
        mut write_fn: impl FnMut(&mut TestWriter, &T) -> IonResult<()>,
        mut read_fn: impl FnMut(&mut TestReader) -> IonResult<U>,
    ) -> IonResult<()>
    where
        T: Debug,
        U: std::cmp::PartialEq<T> + Debug,
    {
        binary_writer_test(
            |writer| {
                for value in values {
                    write_fn(writer, value)?;
                }
                Ok(())
            },
            |reader| {
                for value in values {
                    assert_eq!(reader.next()?, StreamItem::Value(ion_type));
                    let reader_value = read_fn(reader)?;
                    assert_eq!(
                        reader_value, *value,
                        "Value read back in (left) was not equal to the original value (right)"
                    );
                }
                Ok(())
            },
        )
    }

    #[test]
    fn binary_writer_nulls() -> IonResult<()> {
        let ion_types = &[
            IonType::Null,
            IonType::Bool,
            IonType::Int,
            IonType::Float,
            IonType::Decimal,
            IonType::Timestamp,
            IonType::Symbol,
            IonType::String,
            IonType::Clob,
            IonType::Blob,
            IonType::List,
            IonType::SExp,
            IonType::Struct,
        ];

        binary_writer_test(
            |writer| {
                for ion_type in ion_types {
                    writer.write_null(*ion_type)?;
                }
                Ok(())
            },
            |reader| {
                for ion_type in ion_types {
                    assert_eq!(reader.next()?, StreamItem::Null(*ion_type));
                }
                Ok(())
            },
        )
    }

    #[test]
    fn binary_writer_bools() -> IonResult<()> {
        binary_writer_scalar_test(
            &[true, false],
            IonType::Bool,
            |writer, v| writer.write_bool(*v),
            |reader| reader.read_bool(),
        )
    }

    #[test]
    fn binary_writer_ints() -> IonResult<()> {
        binary_writer_scalar_test(
            &[-24_601, -17, -1, 0, 1, 17, 24_601],
            IonType::Int,
            |writer, v| writer.write_i64(*v),
            |reader| reader.read_i64(),
        )
    }

    #[test]
    fn binary_writer_floats() -> IonResult<()> {
        binary_writer_scalar_test(
            &[-24.601, -1.7, -1.0, -0.0, 0.0, 1.0, 1.7, 24.601],
            IonType::Float,
            |writer, v| writer.write_f64(*v),
            |reader| reader.read_f64(),
        )
    }

    #[rstest]
    #[case::year(Timestamp::with_year(2021).build().unwrap())]
    #[case::year_month(Timestamp::with_year(2021).with_month(1).build().unwrap())]
    #[case::year_month_day(Timestamp::with_ymd(2021, 1, 8).build().unwrap())]
    #[case::ymd_hm_unknown(Timestamp::with_ymd(2021, 1, 8).with_hour_and_minute(14, 12).build_at_unknown_offset().unwrap())]
    #[case::ymd_hm_est(Timestamp::with_ymd(2021, 1, 8).with_hour_and_minute(14, 12).build_at_offset(-5 * 60).unwrap())]
    #[case::ymd_hms_unknown(Timestamp::with_ymd(2021, 1, 8).with_hms(14, 12, 36).build_at_unknown_offset().unwrap())]
    #[case::ymd_hms_est(Timestamp::with_ymd(2021, 1, 8).with_hms(14, 12, 36).build_at_offset(-5 * 60).unwrap())]
    #[case::ymd_hms_millis_unknown(Timestamp::with_ymd(2021, 1, 8).with_hms(14, 12, 36).with_milliseconds(888).build_at_unknown_offset().unwrap())]
    #[case::ymd_hms_millis_est(Timestamp::with_ymd(2021, 1, 8).with_hms(14, 12, 36).with_milliseconds(888).build_at_offset(-5 * 60).unwrap())]
    #[case::ymd_hms_nanos_unknown(Timestamp::with_ymd(2021, 1, 8).with_hms(14, 12, 36).with_nanoseconds(888888888).build_at_unknown_offset().unwrap())]
    #[case::ymd_hms_nanos_est(Timestamp::with_ymd(2021, 1, 8).with_hms(14, 12, 36).with_nanoseconds(888888888).build_at_offset(-5 * 60).unwrap())]
    fn binary_writer_timestamps(#[case] timestamp: Timestamp) -> IonResult<()> {
        binary_writer_scalar_test(
            &[timestamp],
            IonType::Timestamp,
            |writer, v| writer.write_timestamp(v),
            |reader| reader.read_timestamp(),
        )
    }

    #[rstest]
    #[case(24.601)]
    #[case(-24.601)]
    #[case(1.7)]
    #[case(-1.7)]
    #[case(1.0)]
    #[case(-1.0)]
    #[case::positive_zero(0.0)]
    #[case::negative_zero(f64::neg_zero())]
    fn binary_writer_decimals(#[case] value: f64) -> IonResult<()> {
        let decimal: Decimal = value.try_into().unwrap();
        binary_writer_scalar_test(
            &[decimal],
            IonType::Decimal,
            |writer, v| writer.write_decimal(v),
            |reader| reader.read_decimal(),
        )
    }

    #[test]
    fn binary_writer_symbols() -> IonResult<()> {
        let symbol_ids: Vec<RawSymbolToken> = [0, 5, 10, 31, 111, 556, 1024, 74_991, 111_448]
            .iter()
            .map(|sid| local_sid_token(*sid))
            .collect();
        binary_writer_scalar_test(
            symbol_ids.as_slice(),
            IonType::Symbol,
            |writer, v| writer.write_symbol_id(v.local_sid().unwrap()),
            |reader| reader.read_raw_symbol(),
        )
    }

    #[test]
    fn binary_writer_strings() -> IonResult<()> {
        binary_writer_scalar_test(
            &["", "foo", "bar", "baz", "quux", "Winnipeg", "😂😂😂"],
            IonType::String,
            |writer, v| writer.write_string(*v),
            |reader| reader.read_string(),
        )
    }

    #[test]
    fn binary_writer_lobs() -> IonResult<()> {
        let values: Vec<&[u8]> = ["", "foo", "bar", "baz", "quux", "Winnipeg", "😂😂😂"]
            .iter()
            .map(|s| s.as_bytes())
            .collect();

        let clobs: Vec<Clob> = values.iter().map(|b| Clob::from(*b)).collect();
        let blobs: Vec<Blob> = values.iter().map(|b| Blob::from(*b)).collect();

        binary_writer_scalar_test(
            clobs.as_slice(),
            IonType::Clob,
            |writer, v| writer.write_clob(v),
            |reader| reader.read_clob(),
        )?;

        binary_writer_scalar_test(
            blobs.as_slice(),
            IonType::Blob,
            |writer, v| writer.write_blob(v),
            |reader| reader.read_blob(),
        )
    }

    fn expect_scalar<T: Debug, U: PartialEq<T> + Debug>(
        reader: &mut TestReader,
        ion_type: IonType,
        mut read_fn: impl FnMut(&mut TestReader) -> IonResult<U>,
        expected_value: T,
    ) {
        let next = reader.next().unwrap_or_else(|_| {
            panic!("Expected to read {expected_value:?}, but the stream was empty.")
        });
        assert_eq!(next, StreamItem::Value(ion_type));
        let value = read_fn(reader)
            .unwrap_or_else(|_| panic!("Failed to read in expected value: {expected_value:?}"));
        assert_eq!(value, expected_value);
    }

    fn expect_bool(reader: &mut TestReader, value: bool) {
        expect_scalar(reader, IonType::Bool, |r| r.read_bool(), value);
    }

    fn expect_integer(reader: &mut TestReader, value: i64) {
        expect_scalar(reader, IonType::Int, |r| r.read_i64(), value);
    }

    fn expect_big_integer(reader: &mut TestReader, value: &BigInt) {
        expect_scalar(
            reader,
            IonType::Int,
            |r| r.read_int(),
            Int::BigInt(value.clone()),
        );
    }

    fn expect_float(reader: &mut TestReader, value: f64) {
        expect_scalar(reader, IonType::Float, |r| r.read_f64(), value);
    }

    fn expect_symbol_id(reader: &mut TestReader, value: SymbolId) {
        expect_scalar(
            reader,
            IonType::Symbol,
            |r| r.read_raw_symbol(),
            local_sid_token(value),
        );
    }

    fn expect_string(reader: &mut TestReader, value: &str) {
        expect_scalar(reader, IonType::String, |r| r.read_string(), value);
    }

    fn expect_null(reader: &mut TestReader) {
        assert_eq!(
            reader.next().expect("Failed to read null."),
            StreamItem::Null(IonType::Null)
        );
    }

    fn expect_container(reader: &mut TestReader, ion_type: IonType) {
        assert_eq!(
            reader.next().expect("Failed to read container."),
            StreamItem::Value(ion_type)
        );
    }

    fn expect_list(reader: &mut TestReader) {
        expect_container(reader, IonType::List);
    }

    fn expect_s_expression(reader: &mut TestReader) {
        expect_container(reader, IonType::SExp);
    }

    fn expect_struct(reader: &mut TestReader) {
        expect_container(reader, IonType::Struct);
    }

    fn expect_field_name(reader: &TestReader, field_name: &str) {
        assert!(reader.field_name().is_ok());
        assert_eq!(reader.field_name().unwrap(), field_name);
    }

    fn expect_annotations(reader: &TestReader, annotations: &[&str]) {
        assert_eq!(
            reader
                .annotations()
                .map(|opt| opt.expect("Annotation with unknown text."))
                .collect::<Vec<Symbol>>()
                .as_slice(),
            annotations
        );
    }

    fn write_lst<W: Write>(writer: &mut RawBinaryWriter<W>, symbols: &[&str]) -> IonResult<()> {
        // $ion_symbol_table::{symbols: ["your", "strings", "here"]}
        writer.set_annotations([3]); // $ion_symbol_table
        writer.step_in(IonType::Struct)?;
        writer.set_field_id(7); // symbols
        writer.step_in(IonType::List)?;
        for symbol in symbols {
            writer.write_string(symbol)?;
        }
        writer.step_out()?;
        writer.step_out()?;
        Ok(())
    }

    #[test]
    fn binary_writer_large_integers() -> IonResult<()> {
        // 11 byte UInt
        let big_positive = BigInt::from_str("123456789123456789123456789").unwrap();
        // 19 byte UInt
        let very_big_positive =
            BigInt::from_str("123456789123456789123456789123456789123456789").unwrap();
        let big_negative = -big_positive.clone();
        let very_big_negative = -very_big_positive.clone();
        binary_writer_test(
            |writer| {
                writer.write_int(&Int::BigInt(BigInt::zero()))?;
                writer.write_int(&Int::BigInt(big_positive.clone()))?;
                writer.write_int(&Int::BigInt(very_big_positive.clone()))?;
                writer.write_int(&Int::BigInt(big_negative.clone()))?;
                writer.write_int(&Int::BigInt(very_big_negative.clone()))?;
                Ok(())
            },
            |reader| {
                expect_big_integer(reader, &BigInt::zero());
                expect_big_integer(reader, &big_positive);
                expect_big_integer(reader, &very_big_positive);
                expect_big_integer(reader, &big_negative);
                expect_big_integer(reader, &very_big_negative);
                Ok(())
            },
        )
    }

    #[test]
    fn binary_writer_mixed_scalars() -> IonResult<()> {
        // The tests above write streams containing a single type of Ion value. This test writes
        // a mix.
        binary_writer_test(
            |writer| {
                writer.write_i64(42)?;
                writer.write_string("Hello")?;
                writer.write_symbol_id(12)?;
                writer.write_f32(2.5)?;
                writer.write_f64(7.5)?;
                writer.write_bool(false)
            },
            |reader| {
                expect_integer(reader, 42);
                expect_string(reader, "Hello");
                expect_symbol_id(reader, 12);
                expect_float(reader, 2.5);
                expect_float(reader, 7.5);
                expect_bool(reader, false);
                Ok(())
            },
        )
    }

    #[test]
    fn binary_writer_annotated_scalars() -> IonResult<()> {
        binary_writer_test(
            |writer| {
                write_lst(writer, &["foo", "bar", "baz", "quux", "quuz", "waldo"])?;

                writer.set_annotations([10]);
                writer.write_bool(true)?;

                writer.set_annotations([11, 12]);
                writer.write_i64(42)?;

                writer.set_annotations([13, 14, 15]);
                writer.write_string("Hello")
            },
            |reader| {
                expect_bool(reader, true);
                expect_annotations(reader, &["foo"]);

                expect_integer(reader, 42);
                expect_annotations(reader, &["bar", "baz"]);

                expect_string(reader, "Hello");
                expect_annotations(reader, &["quux", "quuz", "waldo"]);
                Ok(())
            },
        )
    }

    #[test]
    fn binary_writer_annotated_containers() -> IonResult<()> {
        binary_writer_test(
            |writer| {
                write_lst(
                    writer,
                    &["foo", "bar", "baz", "quux", "quuz", "waldo", "gary"],
                )?;

                // foo::(true)
                writer.set_annotations([10]);
                writer.step_in(IonType::SExp)?;
                writer.write_bool(true)?;
                writer.step_out()?;

                // bar::baz::[11]
                writer.set_annotations([11, 12]);
                writer.step_in(IonType::List)?;
                writer.write_i64(11)?;
                writer.step_out()?;

                // quux::quuz::waldo::{gary: "foo"}
                writer.set_annotations([13, 14, 15]);
                writer.step_in(IonType::Struct)?;
                writer.set_field_id(16);
                writer.write_string("foo")?;
                writer.step_out()
            },
            |reader| {
                expect_s_expression(reader);
                expect_annotations(reader, &["foo"]);
                reader.step_in()?;
                expect_bool(reader, true);
                reader.step_out()?;

                expect_list(reader);
                expect_annotations(reader, &["bar", "baz"]);
                reader.step_in()?;
                expect_integer(reader, 11);
                reader.step_out()?;

                expect_struct(reader);
                expect_annotations(reader, &["quux", "quuz", "waldo"]);
                reader.step_in()?;
                expect_string(reader, "foo");
                expect_field_name(reader, "gary");
                reader.step_out()?;
                Ok(())
            },
        )
    }

    #[test]
    fn binary_writer_nested_annotated_containers() -> IonResult<()> {
        binary_writer_test(
            |writer| {
                write_lst(writer, &["foo", "bar", "baz", "quux"])?;
                // foo::{bar: baz::[quux::"quuz"]]}
                writer.set_annotations([10]);
                writer.step_in(IonType::Struct)?;
                writer.set_field_id(11);
                writer.set_annotations([12]);
                writer.step_in(IonType::List)?;
                writer.set_annotations([13]);
                writer.write_string("quuz")?;
                writer.step_out()?; // End of list
                writer.step_out() // End of struct
            },
            |reader| {
                expect_struct(reader);
                expect_annotations(reader, &["foo"]);
                reader.step_in()?;
                expect_list(reader);
                expect_field_name(reader, "bar");
                expect_annotations(reader, &["baz"]);
                reader.step_in()?;
                expect_string(reader, "quuz");
                expect_annotations(reader, &["quux"]);
                reader.step_out()?;
                reader.step_out()?;
                Ok(())
            },
        )
    }

    #[test]
    fn binary_writer_list() -> IonResult<()> {
        binary_writer_test(
            |writer| {
                // [42, "Hello"]
                writer.step_in(IonType::List)?;
                writer.write_i64(42)?;
                writer.write_string("Hello")?;
                writer.step_out()
            },
            |reader| {
                expect_list(reader);
                reader.step_in()?;
                expect_integer(reader, 42);
                expect_string(reader, "Hello");
                reader.step_out()
            },
        )
    }

    #[test]
    fn binary_writer_nested_list() -> IonResult<()> {
        binary_writer_test(
            |writer| {
                // [42, ["Hello"], "foo"]
                writer.step_in(IonType::List)?;
                writer.write_i64(42)?;
                writer.step_in(IonType::List)?;
                writer.write_string("Hello")?;
                writer.step_out()?;
                writer.write_string("foo")?;
                writer.step_out()
            },
            |reader| {
                expect_list(reader);
                reader.step_in()?;
                expect_integer(reader, 42);
                expect_list(reader);
                reader.step_in()?;
                expect_string(reader, "Hello");
                reader.step_out()?;
                expect_string(reader, "foo");
                reader.step_out()
            },
        )
    }

    #[test]
    fn binary_writer_nested_structs() -> IonResult<()> {
        binary_writer_test(
            |writer| {
                write_lst(writer, &["foo", "bar", "baz", "quux"])?;

                // {foo: true, bar: {quux: 7}, baz: null}
                writer.step_in(IonType::Struct)?;
                writer.set_field_id(10);
                writer.write_bool(true)?;
                writer.set_field_id(11);
                writer.step_in(IonType::Struct)?;
                writer.set_field_id(13);
                writer.write_i64(7)?;
                writer.step_out()?; // End of nested struct
                writer.set_field_id(12);
                writer.write_null(IonType::Null)?;
                writer.step_out() // End of top-level struct
            },
            |reader| {
                expect_struct(reader);
                reader.step_in()?;
                expect_bool(reader, true);
                expect_field_name(reader, "foo");
                expect_struct(reader);
                expect_field_name(reader, "bar");
                reader.step_in()?;
                expect_integer(reader, 7);
                expect_field_name(reader, "quux");
                reader.step_out()?;
                expect_null(reader);
                expect_field_name(reader, "baz");
                reader.step_out()
            },
        )
    }
}