1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
use num_bigint::BigUint;
use std::io::Write;
use std::mem;

use crate::data_source::IonDataSource;
use crate::result::{decoding_error, IonResult};
use crate::types::{Int, UInt};

// This limit is used for stack-allocating buffer space to encode/decode UInts.
const UINT_STACK_BUFFER_SIZE: usize = 16;
// This number was chosen somewhat arbitrarily and could be lifted if a use case demands it.
const MAX_UINT_SIZE_IN_BYTES: usize = 2048;

/// Represents a fixed-length unsigned integer. See the
/// [UInt and Int Fields](https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields)
/// section of the binary Ion spec for more details.
#[derive(Debug)]
pub struct DecodedUInt {
    size_in_bytes: usize,
    value: UInt,
}

impl DecodedUInt {
    pub(crate) fn new(value: UInt, size_in_bytes: usize) -> Self {
        DecodedUInt {
            size_in_bytes,
            value,
        }
    }

    /// Interprets all of the bytes in the provided slice as big-endian unsigned integer bytes.
    /// The caller must confirm that `uint_bytes` is no longer than 8 bytes long; otherwise,
    /// overflow may quietly occur.
    pub(crate) fn small_uint_from_slice(uint_bytes: &[u8]) -> u64 {
        let mut magnitude: u64 = 0;
        for &byte in uint_bytes {
            let byte = u64::from(byte);
            magnitude <<= 8;
            magnitude |= byte;
        }
        magnitude
    }

    /// Interprets all of the bytes in the provided slice as big-endian unsigned integer bytes.
    pub(crate) fn big_uint_from_slice(uint_bytes: &[u8]) -> BigUint {
        BigUint::from_bytes_be(uint_bytes)
    }

    /// Reads a UInt with `length` bytes from the provided data source.
    pub fn read<R: IonDataSource>(data_source: &mut R, length: usize) -> IonResult<DecodedUInt> {
        if length > MAX_UINT_SIZE_IN_BYTES {
            return decoding_error(format!(
                "Found a {length}-byte UInt. Max supported size is {MAX_UINT_SIZE_IN_BYTES} bytes."
            ));
        }

        if length <= UINT_STACK_BUFFER_SIZE {
            let buffer = &mut [0u8; UINT_STACK_BUFFER_SIZE];
            DecodedUInt::read_using_buffer(data_source, length, buffer)
        } else {
            // We're reading an enormous int. Heap-allocate a Vec to use as storage.
            let mut buffer = vec![0u8; length];
            DecodedUInt::read_using_buffer(data_source, length, buffer.as_mut_slice())
        }
    }

    fn read_using_buffer<R: IonDataSource>(
        data_source: &mut R,
        length: usize,
        buffer: &mut [u8],
    ) -> IonResult<DecodedUInt> {
        // Get a mutable reference to a portion of the buffer just big enough to fit
        // the requested number of bytes.
        let buffer = &mut buffer[0..length];

        data_source.read_exact(buffer)?;

        let value = if length <= mem::size_of::<u64>() {
            // The UInt is small enough to fit in a u64.
            let mut magnitude: u64 = 0;
            for &byte in buffer.iter() {
                let byte = u64::from(byte);
                magnitude <<= 8;
                magnitude |= byte;
            }
            UInt::U64(magnitude)
        } else {
            // The UInt is too large to fit in a u64; read it as a BigUInt instead
            let magnitude = BigUint::from_bytes_be(buffer);
            UInt::BigUInt(magnitude)
        };

        Ok(DecodedUInt {
            size_in_bytes: length,
            value,
        })
    }

    /// Encodes the provided `magnitude` as a UInt and writes it to the provided `sink`.
    pub fn write_u64<W: Write>(sink: &mut W, magnitude: u64) -> IonResult<usize> {
        let encoded = encode_u64(magnitude);
        let bytes_to_write = encoded.as_ref();

        sink.write_all(bytes_to_write)?;
        Ok(bytes_to_write.len())
    }

    /// Returns the magnitude of the unsigned integer.
    #[inline(always)]
    pub fn value(&self) -> &UInt {
        &self.value
    }

    /// Returns the number of bytes that were read from the data source to construct this
    /// unsigned integer.
    #[inline(always)]
    pub fn size_in_bytes(&self) -> usize {
        self.size_in_bytes
    }
}

impl From<DecodedUInt> for Int {
    fn from(uint: DecodedUInt) -> Self {
        let DecodedUInt {
            value,
            .. // Ignore 'size_in_bytes'
        } = uint;
        Int::from(value)
    }
}

/// A buffer for storing a UInt's Big Endian bytes. UInts that can fit in a `u64` will use the
/// `Stack` storage variant, meaning that no heap allocations are required in the common case.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum UIntBeBytes {
    Stack([u8; mem::size_of::<u64>()]),
    Heap(Vec<u8>),
}

/// The big-endian, compact slice of bytes for a UInt (`u64`). Leading zero
/// octets are not part of the representation. See the [spec] for more
/// information.
///
/// [spec]: https://amazon-ion.github.io/ion-docs/docs/binary.html#uint-and-int-fields
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct EncodedUInt {
    be_bytes: UIntBeBytes,
    first_occupied_byte: usize,
}

impl EncodedUInt {
    /// Returns the slice view of the encoded UInt.
    pub fn as_bytes(&self) -> &[u8] {
        match self.be_bytes {
            UIntBeBytes::Stack(ref byte_array) => &byte_array[self.first_occupied_byte..],
            UIntBeBytes::Heap(ref byte_vec) => &byte_vec[self.first_occupied_byte..],
        }
    }
}

impl AsRef<[u8]> for EncodedUInt {
    /// The same as [EncodedUInt::as_bytes].
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

/// Returns the magnitude as big-endian bytes.
///
/// ```
/// use ion_rs::binary::uint;
///
/// let repr = uint::encode_u64(5u64);
/// assert_eq!(&[0x05], repr.as_bytes());
///
/// let two_bytes = uint::encode_u64(256u64);
/// assert_eq!(&[0x01, 0x00], two_bytes.as_bytes());
/// ```
pub fn encode_u64(magnitude: u64) -> EncodedUInt {
    // We can divide the number of leading zero bits by 8
    // to to get the number of leading zero bytes.
    let empty_leading_bytes: u32 = magnitude.leading_zeros() / 8;
    let first_occupied_byte = empty_leading_bytes as usize;

    let magnitude_bytes: [u8; mem::size_of::<u64>()] = magnitude.to_be_bytes();

    EncodedUInt {
        be_bytes: UIntBeBytes::Stack(magnitude_bytes),
        first_occupied_byte,
    }
}

/// Returns the magnitude as big-endian bytes.
pub fn encode_uint(magnitude: &UInt) -> EncodedUInt {
    let magnitude: &BigUint = match magnitude {
        UInt::U64(m) => return encode_u64(*m),
        UInt::BigUInt(m) => m,
    };

    let be_bytes = UIntBeBytes::Heap(magnitude.to_bytes_be());
    let first_occupied_byte = 0;

    EncodedUInt {
        be_bytes,
        first_occupied_byte,
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use num_traits::Num;
    use std::io::Cursor;

    const READ_ERROR_MESSAGE: &str = "Failed to read a UInt from the provided cursor.";
    const WRITE_ERROR_MESSAGE: &str = "Writing a UInt to the provided sink failed.";

    #[test]
    fn test_read_one_byte_uint() {
        let data = &[0b1000_0000];
        let uint = DecodedUInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(uint.size_in_bytes(), 1);
        assert_eq!(uint.value(), &UInt::U64(128));
    }

    #[test]
    fn test_read_two_byte_uint() {
        let data = &[0b0111_1111, 0b1111_1111];
        let uint = DecodedUInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(uint.size_in_bytes(), 2);
        assert_eq!(uint.value(), &UInt::U64(32_767));
    }

    #[test]
    fn test_read_three_byte_uint() {
        let data = &[0b0011_1100, 0b1000_0111, 0b1000_0001];
        let uint = DecodedUInt::read(&mut Cursor::new(data), data.len()).expect(READ_ERROR_MESSAGE);
        assert_eq!(uint.size_in_bytes(), 3);
        assert_eq!(uint.value(), &UInt::U64(3_966_849));
    }

    #[test]
    fn test_read_ten_byte_uint() {
        let data = vec![0xFFu8; 10];
        let uint = DecodedUInt::read(&mut Cursor::new(data.as_slice()), data.len())
            .expect(READ_ERROR_MESSAGE);
        assert_eq!(uint.size_in_bytes(), 10);
        assert_eq!(
            uint.value(),
            &UInt::BigUInt(BigUint::from_str_radix("ffffffffffffffffffff", 16).unwrap())
        );
    }

    #[test]
    fn test_read_uint_too_large() {
        let mut buffer = Vec::with_capacity(MAX_UINT_SIZE_IN_BYTES + 1);
        buffer.resize(MAX_UINT_SIZE_IN_BYTES + 1, 1);
        let data = buffer.as_slice();
        let _uint = DecodedUInt::read(&mut Cursor::new(data), data.len())
            .expect_err("This exceeded the configured max UInt size.");
    }

    #[test]
    fn test_write_ten_byte_uint() {
        let value = UInt::BigUInt(BigUint::from_str_radix("ffffffffffffffffffff", 16).unwrap());
        let mut buffer: Vec<u8> = vec![];
        let encoded = super::encode_uint(&value);
        buffer.write_all(encoded.as_bytes()).unwrap();
        let expected_bytes = vec![0xFFu8; 10];
        assert_eq!(expected_bytes.as_slice(), buffer.as_slice());
    }

    #[test]
    fn test_write_eight_byte_uint() {
        let value = 0x01_23_45_67_89_AB_CD_EF;
        let mut buffer: Vec<u8> = vec![];
        DecodedUInt::write_u64(&mut buffer, value).expect(WRITE_ERROR_MESSAGE);
        let expected_bytes = &[0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF];
        assert_eq!(expected_bytes, buffer.as_slice());
    }

    #[test]
    fn test_write_five_byte_uint() {
        let value = 0x01_23_45_67_89;
        let mut buffer: Vec<u8> = vec![];
        DecodedUInt::write_u64(&mut buffer, value).expect(WRITE_ERROR_MESSAGE);
        let expected_bytes = &[0x01, 0x23, 0x45, 0x67, 0x89];
        assert_eq!(expected_bytes, buffer.as_slice());
    }

    #[test]
    fn test_write_three_byte_uint() {
        let value = 0x01_23_45;
        let mut buffer: Vec<u8> = vec![];
        DecodedUInt::write_u64(&mut buffer, value).expect(WRITE_ERROR_MESSAGE);
        let expected_bytes: &[u8] = &[0x01, 0x23, 0x45];
        assert_eq!(expected_bytes, buffer.as_slice());
    }

    #[test]
    fn test_write_uint_zero() {
        let value = 0x00;
        let mut buffer: Vec<u8> = vec![];
        DecodedUInt::write_u64(&mut buffer, value).expect(WRITE_ERROR_MESSAGE);
        let expected_bytes: &[u8] = &[];
        assert_eq!(expected_bytes, buffer.as_slice());
    }
}