1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
use delegate::delegate;
use std::ops::Range;

use crate::binary::non_blocking::raw_binary_reader::RawBinaryReader;
use crate::data_source::ToIonDataSource;
use crate::element::{Blob, Clob};
use crate::raw_reader::BufferedRawReader;
use crate::result::IonResult;
use crate::stream_reader::IonReader;
use crate::text::non_blocking::raw_text_reader::RawTextReader;
use crate::types::Timestamp;
use crate::{Decimal, Int, IonError, IonType, Str};

pub type BlockingRawTextReader<T> = BlockingRawReader<RawTextReader<Vec<u8>>, T>;
pub type BlockingRawBinaryReader<T> = BlockingRawReader<RawBinaryReader<Vec<u8>>, T>;

/// The BlockingRawReader wraps a non-blocking RawReader that implements the BufferedReader trait,
/// providing a blocking RawReader.
pub struct BlockingRawReader<R: BufferedRawReader, T: ToIonDataSource> {
    source: T::DataSource,
    reader: R,
    expected_read_size: usize,
}

const READER_DEFAULT_BUFFER_CAPACITY: usize = 1024 * 4;

impl<R: BufferedRawReader, T: ToIonDataSource> BlockingRawReader<R, T> {
    pub fn read_source(&mut self, length: usize) -> IonResult<usize> {
        let mut bytes_read = 0;
        loop {
            let n = self.reader.read_from(&mut self.source, length)?;
            bytes_read += n;
            if n == 0 || bytes_read >= length {
                break;
            }
        }
        Ok(bytes_read)
    }

    pub fn new(input: T) -> IonResult<Self> {
        Self::new_with_size(input, READER_DEFAULT_BUFFER_CAPACITY)
    }

    pub fn new_with_size(input: T, size: usize) -> IonResult<Self> {
        let buffer = Vec::with_capacity(size);
        let mut reader = Self {
            source: input.to_ion_data_source(),
            reader: buffer.into(),
            expected_read_size: size,
        };
        reader.read_source(size)?;
        Ok(reader)
    }
}

impl<R: BufferedRawReader, T: ToIonDataSource> IonReader for BlockingRawReader<R, T> {
    type Item = R::Item;
    type Symbol = R::Symbol;

    fn ion_version(&self) -> (u8, u8) {
        (1, 0)
    }

    fn next(&mut self) -> IonResult<Self::Item> {
        let mut read_size = self.expected_read_size;

        loop {
            let result = self.reader.next();
            if let Err(IonError::Incomplete { .. }) = result {
                let bytes_read = self.read_source(read_size)?;
                // if we have no bytes, and our stream has been marked as fully loaded, then we
                // need to bubble up the error. Otherwise, if our stream has not been marked as
                // loaded, then we need to mark it as loaded and retry.
                if 0 == bytes_read {
                    if self.reader.is_stream_complete() {
                        return result;
                    } else {
                        self.reader.stream_complete();
                    }
                }
                // The assumption here is that most buffer sizes will start at a magnitude the user
                // is comfortable with in terms of memory usage. So if we're reading more in order
                // to reach a parsable point we do not want to start consuming more than an order of
                // magnitude more memory just to get there.
                read_size = std::cmp::min(read_size * 2, self.expected_read_size * 10);
            } else {
                return result;
            }
        }
    }

    fn current(&self) -> Self::Item {
        self.reader.current()
    }

    fn ion_type(&self) -> Option<IonType> {
        self.reader.ion_type()
    }

    fn is_null(&self) -> bool {
        self.reader.is_null()
    }

    fn annotations<'a>(&'a self) -> Box<dyn Iterator<Item = IonResult<Self::Symbol>> + 'a> {
        self.reader.annotations()
    }

    fn has_annotations(&self) -> bool {
        self.reader.has_annotations()
    }

    fn number_of_annotations(&self) -> usize {
        self.reader.number_of_annotations()
    }

    fn field_name(&self) -> IonResult<Self::Symbol> {
        self.reader.field_name()
    }

    fn read_null(&mut self) -> IonResult<IonType> {
        self.reader.read_null()
    }

    fn read_bool(&mut self) -> IonResult<bool> {
        self.reader.read_bool()
    }

    fn read_int(&mut self) -> IonResult<Int> {
        self.reader.read_int()
    }

    fn read_i64(&mut self) -> IonResult<i64> {
        self.reader.read_i64()
    }

    fn read_f32(&mut self) -> IonResult<f32> {
        self.reader.read_f32()
    }

    fn read_f64(&mut self) -> IonResult<f64> {
        self.reader.read_f64()
    }

    fn read_decimal(&mut self) -> IonResult<Decimal> {
        self.reader.read_decimal()
    }

    fn read_string(&mut self) -> IonResult<Str> {
        self.reader.read_string()
    }

    fn read_str(&mut self) -> IonResult<&str> {
        self.reader.read_str()
    }

    fn read_symbol(&mut self) -> IonResult<Self::Symbol> {
        self.reader.read_symbol()
    }

    fn read_blob(&mut self) -> IonResult<Blob> {
        self.reader.read_blob()
    }

    fn read_clob(&mut self) -> IonResult<Clob> {
        self.reader.read_clob()
    }

    fn read_timestamp(&mut self) -> IonResult<Timestamp> {
        self.reader.read_timestamp()
    }

    fn step_in(&mut self) -> IonResult<()> {
        self.reader.step_in()
    }

    fn step_out(&mut self) -> IonResult<()> {
        let mut read_size = self.expected_read_size;
        loop {
            let result = self.reader.step_out();
            if let Err(IonError::Incomplete { .. }) = result {
                if 0 == self.read_source(read_size)? {
                    return result;
                }
            } else {
                return result;
            }
            read_size = std::cmp::min(read_size * 2, self.expected_read_size * 10);
        }
    }

    fn parent_type(&self) -> Option<IonType> {
        self.reader.parent_type()
    }

    fn depth(&self) -> usize {
        self.reader.depth()
    }
}

impl<T: ToIonDataSource> BlockingRawReader<RawBinaryReader<Vec<u8>>, T> {
    delegate! {
        to self.reader {
            pub fn raw_bytes(&self) ->  Option<&[u8]>;

            pub fn field_id_length(&self) -> Option<usize>;
            pub fn field_id_offset(&self) -> Option<usize>;
            pub fn field_id_range(&self) -> Option<Range<usize>>;
            pub fn raw_field_id_bytes(&self) -> Option<&[u8]>;

            pub fn annotations_length(&self) -> Option<usize>;
            pub fn annotations_offset(&self) -> Option<usize>;
            pub fn annotations_range(&self) -> Option<Range<usize>>;
            pub fn raw_annotations_bytes(&self) -> Option<&[u8]>;

            pub fn header_length(&self) -> usize;
            pub fn header_offset(&self) -> usize;
            pub fn header_range(&self) -> Range<usize>;
            pub fn raw_header_bytes(&self) -> Option<&[u8]>;

            pub fn value_length(&self) -> usize;
            pub fn value_offset(&self) -> usize;
            pub fn value_range(&self) -> Range<usize>;
            pub fn raw_value_bytes(&self) -> Option<&[u8]>;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::binary::non_blocking::raw_binary_reader::RawBinaryReader as NBRawBinaryReader;
    use crate::raw_reader::RawStreamItem;
    use crate::result::IonResult;
    use crate::text::non_blocking::raw_text_reader::RawTextReader;

    fn bin_reader(source: &[u8]) -> BlockingRawBinaryReader<Vec<u8>> {
        let reader = BlockingRawReader::<NBRawBinaryReader<Vec<u8>>, Vec<u8>>::new(source.to_vec());
        reader.unwrap()
    }

    fn text_reader(source: &[u8]) -> BlockingRawTextReader<Vec<u8>> {
        let reader = BlockingRawReader::<RawTextReader<Vec<u8>>, Vec<u8>>::new(source.to_vec());
        reader.unwrap()
    }

    mod data {
        pub mod binary_reader {
            // Binary reader data has been converted from the text data. In the cases where symbol
            // tables were added to the binary output, an empty struct was added to the text
            // version in order to keep the sequence of tests the same.
            pub const BASIC_INCOMPLETE: &[u8] = &[
                0xe0, 0x01, 0x00, 0xea, 0xb6, 0x21, 0x01, 0x21, 0x02, 0x21, // 0x03,
            ];

            pub const STRING_BASIC: &[u8] = &[
                0xe0, 0x01, 0x00, 0xea, 0x8b, 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x57, 0x6f, 0x72,
                0x6c, 0x64,
            ];

            pub const STRUCT_NESTED: &[u8] = &[
                0xe0, 0x01, 0x00, 0xea, 0xee, 0x95, 0x81, 0x83, 0xde, 0x91, 0x86, 0x71, 0x03, 0x87,
                0xbc, 0x83, 0x66, 0x6f, 0x6f, 0x83, 0x62, 0x61, 0x72, 0x81, 0x61, 0x81, 0x62, 0xde,
                0x95, 0x8a, 0xb9, 0x21, 0x01, 0xb4, 0x21, 0x02, 0x21, 0x03, 0x21, 0x04, 0x8b, 0xd8,
                0x8c, 0x21, 0x05, 0x8d, 0xc3, 0x11, 0x11, 0x11, 0x21, 0x0b,
            ];

            pub const BASIC_SYMBOL_TABLE: &[u8] = &[
                /* 0x00 */ 0xe0, 0x01, 0x00, 0xea, 0xee, 0x95, 0x81, 0x83, 0xde, 0x91, 0x86,
                0x71, 0x03, 0x87, 0xbc, 0x83, 0x66, /* 0x10 */ 0x6f, 0x6f, 0x83, 0x62, 0x61,
                0x72, 0x83, 0x62, 0x61, 0x7a, 0x71, 0x0a, 0x71, 0x0b, 0x71, 0x0c,
            ];
        }
        pub mod text_reader {
            pub const BASIC_INCOMPLETE: &[u8] = r#"
              $ion_1_0
              [1, 2, 3
              "#
            .as_bytes();
            pub const STRING_BASIC: &[u8] = r#"
            $ion_1_0
            "Hello World"
            "#
            .as_bytes();

            pub const STRUCT_NESTED: &[u8] = r#"
                $ion_1_0
                $ion_symbol_table::{}
                {
                    foo: [
                        1,
                        [2, 3],
                        4
                    ],
                    bar: {
                        a: 5,
                        b: (true true true)
                    }
                }
                11
            "#
            .as_bytes();

            pub const BASIC_SYMBOL_TABLE: &[u8] = r#"
               $ion_1_0
               $ion_symbol_table::{
                  imports: $ion_symbol_table,
                  symbols: ["foo", "bar", "baz"],
               }
               $10
               $11
               $12
            "#
            .as_bytes();
        }
    }

    macro_rules! raw_reader_tests {
        ($($name:ident: $type:ty,)*) => {
        $(
            mod $name {
                use super::*;
                use super::data::$name::*;
                use crate::raw_symbol_token::RawSymbolToken;

                fn next_type(reader: &mut BlockingRawReader<$type, Vec<u8>>, ion_type: IonType, is_null: bool) {
                    assert_eq!(
                        reader.next().unwrap(),
                        RawStreamItem::nullable_value(ion_type, is_null)
                    );
                }

                // Creates a reader for the specified reader type, with a small (24 byte) read
                // initial size.
                fn new_reader(source: &[u8]) -> BlockingRawReader<$type, Vec<u8>> {
                    let reader = BlockingRawReader::<$type, Vec<u8>>::new_with_size(source.to_vec(), 24);
                    reader.unwrap()
                }

                #[test]
                fn basic_incomplete() -> IonResult<()> {
                    let reader = &mut new_reader(BASIC_INCOMPLETE);
                    assert_eq!(reader.next().unwrap(), RawStreamItem::VersionMarker(1, 0));
                    next_type(reader, IonType::List, false);
                    reader.step_in()?;

                    next_type(reader, IonType::Int, false);
                    assert_eq!(reader.read_i64()?, 1);
                    let result = reader.step_out();
                    match result {
                        Err(IonError::Incomplete { .. }) => (),
                        r => panic!("Unexpected result: {:?}", r),
                    }
                    assert!(result.is_err());

                    Ok(())
                }

                #[test]
                fn incomplete_string() -> IonResult<()> {
                    let reader = &mut new_reader(STRING_BASIC);
                    assert_eq!(reader.next().unwrap(), RawStreamItem::VersionMarker(1, 0));
                    next_type(reader, IonType::String, false);
                    assert_eq!(reader.read_string()?, "Hello World");
                    Ok(())
                }

                #[test]
                fn nested_struct() -> IonResult<()> {
                    let reader = &mut new_reader(STRUCT_NESTED);
                    assert_eq!(reader.next().unwrap(), RawStreamItem::VersionMarker(1, 0));

                    next_type(reader, IonType::Struct, false); // Version Table

                    next_type(reader, IonType::Struct, false);
                    reader.step_in()?;
                    next_type(reader, IonType::List, false);
                    assert!(reader.field_name().is_ok());

                    reader.step_in()?;
                    next_type(reader, IonType::Int, false);
                    assert_eq!(reader.read_i64()?, 1);
                    next_type(reader, IonType::List, false);
                    reader.step_in()?;
                    next_type(reader, IonType::Int, false);
                    assert_eq!(reader.read_i64()?, 2);
                    // next_type(reader, IonType::Integer, false);
                    // assert_eq!(reader.read_i64()?, 3);
                    reader.step_out()?; // Step out of foo[1]
                    reader.step_out()?; // Step out of foo

                    next_type(reader, IonType::Struct, false);
                    assert!(reader.field_name().is_ok());

                    reader.step_in()?;
                    next_type(reader, IonType::Int, false);
                    assert_eq!(reader.read_i64()?, 5);
                    next_type(reader, IonType::SExp, false);
                    reader.step_in()?;
                    next_type(reader, IonType::Bool, false);
                    assert_eq!(reader.read_bool()?, true);
                    next_type(reader, IonType::Bool, false);
                    assert_eq!(reader.read_bool()?, true);
                    next_type(reader, IonType::Bool, false);
                    assert_eq!(reader.read_bool()?, true);
                    // The reader is now at the second 'true' in the s-expression nested in 'bar'/'b'
                    reader.step_out()?; // Step out of bar.b
                    reader.step_out()?; // Step out of bar
                    reader.step_out()?; // Step out of our top-levelstruct

                    next_type(reader, IonType::Int, false);
                    assert_eq!(reader.read_i64()?, 11);
                    Ok(())
                }

                #[test]
                fn basic_symbol_table() -> IonResult<()> {
                    let reader = &mut new_reader(BASIC_SYMBOL_TABLE);
                    assert_eq!(reader.next().unwrap(), RawStreamItem::VersionMarker(1, 0));

                    next_type(reader, IonType::Struct, false);
                    reader.step_in()?;

                    next_type(reader, IonType::Symbol, false);

                    next_type(reader, IonType::List, false);
                    reader.step_in()?;

                    next_type(reader, IonType::String, false);
                    assert_eq!(reader.read_string()?, "foo");
                    next_type(reader, IonType::String, false);
                    assert_eq!(reader.read_string()?, "bar");
                    next_type(reader, IonType::String, false);
                    assert_eq!(reader.read_string()?, "baz");

                    reader.step_out()?; // List
                    reader.step_out()?; // Symbol table
                    next_type(reader, IonType::Symbol, false);
                    assert_eq!(reader.read_symbol()?, RawSymbolToken::SymbolId(10));

                    next_type(reader, IonType::Symbol, false);
                    assert_eq!(reader.read_symbol()?, RawSymbolToken::SymbolId(11));

                    next_type(reader, IonType::Symbol, false);
                    assert_eq!(reader.read_symbol()?, RawSymbolToken::SymbolId(12));

                    Ok(())
                }
            }


        )*
        }
    }

    raw_reader_tests! {
        binary_reader: RawBinaryReader<Vec<u8>>,
        text_reader: RawTextReader<Vec<u8>>,
    }

    #[test]
    fn test_raw_bytes() -> IonResult<()> {
        // Note: technically invalid Ion because the symbol IDs referenced are never added to the
        // symbol table.

        // {$11: [1, 2, 3], $10: 1}
        let ion_data: &[u8] = &[
            // First top-level value in the stream
            0xDB, // 11-byte struct
            0x8B, // Field ID 11
            0xB6, // 6-byte List
            0x21, 0x01, // Integer 1
            0x21, 0x02, // Integer 2
            0x21, 0x03, // Integer 3
            0x8A, // Field ID 10
            0x21, 0x01, // Integer 1
            // Second top-level value in the stream
            0xE3, // 3-byte annotations envelope
            0x81, // * Annotations themselves take 1 byte
            0x8C, // * Annotation w/SID $12
            0x10, // Boolean false
        ];
        let mut cursor = BlockingRawBinaryReader::new(ion_data.to_owned())?;
        assert_eq!(RawStreamItem::Value(IonType::Struct), cursor.next()?);
        assert_eq!(cursor.raw_bytes(), Some(&ion_data[0..1])); // No value bytes for containers.
        assert_eq!(cursor.raw_field_id_bytes(), None);
        assert_eq!(cursor.raw_annotations_bytes(), None);
        assert_eq!(cursor.raw_header_bytes(), Some(&ion_data[0..=0]));
        assert_eq!(cursor.raw_value_bytes(), None);
        cursor.step_in()?;
        assert_eq!(RawStreamItem::Value(IonType::List), cursor.next()?);
        assert_eq!(cursor.raw_bytes(), Some(&ion_data[1..3]));
        assert_eq!(cursor.raw_field_id_bytes(), Some(&ion_data[1..=1]));
        assert_eq!(cursor.raw_annotations_bytes(), None);
        assert_eq!(cursor.raw_header_bytes(), Some(&ion_data[2..=2]));
        assert_eq!(cursor.raw_value_bytes(), None);
        cursor.step_in()?;
        assert_eq!(RawStreamItem::Value(IonType::Int), cursor.next()?);
        assert_eq!(cursor.raw_bytes(), Some(&ion_data[3..=4]));
        assert_eq!(cursor.raw_field_id_bytes(), None);
        assert_eq!(cursor.raw_annotations_bytes(), None);
        assert_eq!(cursor.raw_header_bytes(), Some(&ion_data[3..=3]));
        assert_eq!(cursor.raw_value_bytes(), Some(&ion_data[4..=4]));
        assert_eq!(RawStreamItem::Value(IonType::Int), cursor.next()?);
        assert_eq!(cursor.raw_bytes(), Some(&ion_data[5..=6]));
        assert_eq!(cursor.raw_field_id_bytes(), None);
        assert_eq!(cursor.raw_annotations_bytes(), None);
        assert_eq!(cursor.raw_header_bytes(), Some(&ion_data[5..=5]));
        assert_eq!(cursor.raw_value_bytes(), Some(&ion_data[6..=6]));
        assert_eq!(RawStreamItem::Value(IonType::Int), cursor.next()?);
        assert_eq!(cursor.raw_bytes(), Some(&ion_data[7..=8]));
        assert_eq!(cursor.raw_field_id_bytes(), None);
        assert_eq!(cursor.raw_annotations_bytes(), None);
        assert_eq!(cursor.raw_header_bytes(), Some(&ion_data[7..=7]));
        assert_eq!(cursor.raw_value_bytes(), Some(&ion_data[8..=8]));

        cursor.step_out()?; // Step out of list

        assert_eq!(RawStreamItem::Value(IonType::Int), cursor.next()?);
        assert_eq!(cursor.raw_bytes(), Some(&ion_data[9..=11]));
        assert_eq!(cursor.raw_field_id_bytes(), Some(&ion_data[9..=9]));
        assert_eq!(cursor.raw_annotations_bytes(), None);
        assert_eq!(cursor.raw_header_bytes(), Some(&ion_data[10..=10]));
        assert_eq!(cursor.raw_value_bytes(), Some(&ion_data[11..=11]));

        cursor.step_out()?; // Step out of struct

        // Second top-level value
        assert_eq!(RawStreamItem::Value(IonType::Bool), cursor.next()?);
        assert_eq!(cursor.raw_bytes(), Some(&ion_data[12..16]));
        assert_eq!(cursor.raw_field_id_bytes(), None);
        assert_eq!(cursor.raw_annotations_bytes(), Some(&ion_data[12..=14]));
        assert_eq!(cursor.raw_header_bytes(), Some(&ion_data[15..=15]));
        assert_eq!(
            cursor.raw_value_bytes(),
            Some(&ion_data[15..15] /* That is, zero bytes */)
        );
        Ok(())
    }

    #[test]
    fn test_binary_end_of_stream() -> IonResult<()> {
        // This test is to ensure that the non-blocking binary reader is honoring the end of stream
        // flag, and that the blocking reader is making use of it. A previous bug existed where the
        // binary reader was not using the end of stream flag, and ending a read on a data boundary
        // would result in the blocking reader not providing any more data, since it relies on
        // Incomplete errors to do so.

        // {$11: [1, 2, 3], $10: 1}
        let ion_data: &[u8] = &[
            // First top-level value in the stream
            0xDB, // 11-byte struct
            0x8B, // Field ID 11
            0xB6, // 6-byte List
            0x21, 0x01, // Integer 1
            0x21, 0x02, // Integer 2
            0x21, 0x03, // Integer 3
            0x8A, // Field ID 10
            0x21, 0x01, // Integer 1
            // Second top-level value in the stream
            0xE3, // 3-byte annotations envelope
            0x81, // * Annotations themselves take 1 byte
            0x8C, // * Annotation w/SID $12
            0x10, // Boolean false
        ];
        // Create a blocking reader with an initial buffer size of 12, so that we can read exactly
        // the first value. If EOS is not honored, our second call to `next` should result in no
        // value being read, since the blocking reader would not know to provide more data.
        let mut cursor = BlockingRawBinaryReader::new_with_size(ion_data.to_owned(), 12)?;
        assert_eq!(RawStreamItem::Value(IonType::Struct), cursor.next()?);
        assert_eq!(RawStreamItem::Value(IonType::Bool), cursor.next()?);

        Ok(())
    }
}