1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use num_bigint::{BigInt, BigUint};
use num_traits::Zero;

use crate::result::{illegal_operation, IonError};
use crate::types::UInt;
use std::convert::TryFrom;
use std::fmt::{Display, Formatter};
use std::ops::{MulAssign, Neg};

/// Indicates whether the Coefficient's magnitude is less than 0 (negative) or not (positive).
/// When the magnitude is zero, the Sign can be used to distinguish between -0 and 0.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub enum Sign {
    Negative,
    Positive,
}

/// A signed integer that can be used as the coefficient of a Decimal value. This type does not
/// consider `0` and `-0` to be equal and supports magnitudes of arbitrary size.
// These trait derivations rely closely on the manual implementations of PartialEq and Ord on
// [Magnitude].
#[derive(Debug, Clone, Ord, PartialOrd, Eq, PartialEq)]
pub struct Coefficient {
    pub(crate) sign: Sign,
    pub(crate) magnitude: UInt,
}

impl Coefficient {
    pub(crate) fn new<I: Into<UInt>>(sign: Sign, magnitude: I) -> Self {
        let magnitude = magnitude.into();
        Coefficient { sign, magnitude }
    }

    pub(crate) fn sign(&self) -> Sign {
        self.sign
    }

    pub(crate) fn magnitude(&self) -> &UInt {
        &self.magnitude
    }

    /// Returns the number of digits in the base-10 representation of the coefficient
    pub(crate) fn number_of_decimal_digits(&self) -> u64 {
        self.magnitude.number_of_decimal_digits()
    }

    /// Constructs a new Coefficient that represents negative zero.
    pub(crate) fn negative_zero() -> Self {
        Coefficient {
            sign: Sign::Negative,
            magnitude: UInt::U64(0),
        }
    }

    /// Returns true if the Coefficient represents positive zero.
    pub(crate) fn is_negative_zero(&self) -> bool {
        match (self.sign, &self.magnitude) {
            (Sign::Negative, UInt::U64(0)) => true,
            (Sign::Negative, UInt::BigUInt(b)) if b.is_zero() => true,
            _ => false,
        }
    }

    /// Returns true if the Coefficient represents positive zero.
    pub(crate) fn is_positive_zero(&self) -> bool {
        match (self.sign, &self.magnitude) {
            (Sign::Positive, UInt::U64(0)) => true,
            (Sign::Positive, UInt::BigUInt(b)) if b.is_zero() => true,
            _ => false,
        }
    }

    /// Returns true if the Coefficient represents a zero of any sign.
    pub(crate) fn is_zero(&self) -> bool {
        match (self.sign, &self.magnitude) {
            (_, UInt::U64(0)) => true,
            (_, UInt::BigUInt(b)) if b.is_zero() => true,
            _ => false,
        }
    }

    /// If the value can fit in an i64, return it as such. This is useful for
    /// inline representations.
    pub(crate) fn as_i64(&self) -> Option<i64> {
        match self.magnitude {
            UInt::U64(unsigned) => match i64::try_from(unsigned) {
                Ok(signed) => match self.sign {
                    Sign::Negative => Some(signed.neg()), // cannot overflow (never `MIN`)
                    Sign::Positive => Some(signed),
                },
                Err(_) => None,
            },
            UInt::BigUInt(_) => None,
        }
    }
}

// This macro makes it possible to turn unsigned integers into a Coefficient using `.into()`.
macro_rules! impl_coefficient_from_unsigned_int_types {
    ($($t:ty),*) => ($(
        impl From<$t> for Coefficient {
            fn from(value: $t) -> Coefficient {
                Coefficient::new(Sign::Positive, value)
            }
        }
    )*)
}
impl_coefficient_from_unsigned_int_types!(u8, u16, u32, u64, u128, usize, BigUint);

// This macro makes it possible to turn signed integers into a Coefficient using `.into()`.
macro_rules! impl_coefficient_from_signed_int_types {
    ($($t:ty),*) => ($(
        impl From<$t> for Coefficient {
            fn from(value: $t) -> Coefficient {
                let sign = if value < <$t>::zero() { Sign::Negative } else { Sign::Positive };
                Coefficient::new(sign, value)
            }
        }
    )*)
}
impl_coefficient_from_signed_int_types!(i8, i16, i32, i64, i128, isize);

// `BigInt` can't represent -0, so this is technically a lossy operation.
impl TryFrom<Coefficient> for BigInt {
    type Error = IonError;

    /// Attempts to create a BigInt from a Coefficient. Returns an Error if the Coefficient being
    /// converted is a negative zero, which BigInt cannot represent. Returns Ok otherwise.
    fn try_from(value: Coefficient) -> Result<Self, Self::Error> {
        if value.is_negative_zero() {
            illegal_operation("Cannot convert negative zero Decimal to BigInt")?;
        }
        let mut big_int: BigInt = match value.magnitude {
            UInt::U64(m) => m.into(),
            UInt::BigUInt(m) => m.into(),
        };
        if value.sign == Sign::Negative {
            big_int.mul_assign(-1);
        }
        Ok(big_int)
    }
}

impl TryFrom<BigInt> for Coefficient {
    type Error = IonError;

    fn try_from(value: BigInt) -> Result<Self, Self::Error> {
        let (sign, magnitude) = value.into_parts();
        let sign = match sign {
            num_bigint::Sign::Minus => Sign::Negative,
            num_bigint::Sign::Plus => Sign::Positive,
            num_bigint::Sign::NoSign => {
                if magnitude.is_zero() {
                    Sign::Positive
                } else {
                    return illegal_operation(
                        "Cannot convert sign-less non-zero BigInt to Decimal.",
                    );
                }
            }
        };
        Ok(Coefficient::new(sign, magnitude))
    }
}

impl Display for Coefficient {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.sign {
            Sign::Positive => {}
            Sign::Negative => write!(f, "-")?,
        };
        match &self.magnitude {
            UInt::U64(m) => write!(f, "{}", *m),
            UInt::BigUInt(m) => write!(f, "{m}"),
        }
    }
}

#[cfg(test)]
mod coefficient_tests {
    use crate::ion_data::IonEq;
    use num_bigint::BigUint;

    use crate::types::{Coefficient, Decimal};

    fn eq_test<I1, I2>(c1: I1, c2: I2)
    where
        I1: Into<Coefficient>,
        I2: Into<Coefficient>,
    {
        let c1 = c1.into();
        let c2 = c2.into();
        assert_eq!(c1, c2);
    }

    #[test]
    fn test_coefficient_eq() {
        eq_test(0u64, 0u64);
        eq_test(0u64, BigUint::from(0u64));
        eq_test(BigUint::from(0u64), 0u64);
        eq_test(BigUint::from(0u64), BigUint::from(0u64));

        eq_test(u64::MAX, u64::MAX);
        eq_test(u64::MAX, BigUint::from(u64::MAX));
        eq_test(BigUint::from(u64::MAX), u64::MAX);
        eq_test(BigUint::from(u64::MAX), BigUint::from(u64::MAX));

        eq_test(BigUint::from(u128::MAX), BigUint::from(u128::MAX));
    }

    #[test]
    fn test_negative_zero_eq() {
        let neg_zero = Decimal::new(Coefficient::negative_zero(), 0);
        let pos_zero = Decimal::new(0, 0);
        assert_eq!(neg_zero, neg_zero);
        assert!(neg_zero.ion_eq(&neg_zero));

        assert_eq!(neg_zero, pos_zero);
        assert!(!neg_zero.ion_eq(&pos_zero));

        assert_eq!(pos_zero, pos_zero);
        assert!(pos_zero.ion_eq(&pos_zero));
    }
}