1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
use std::cmp::{max, Ordering};

use bigdecimal::{BigDecimal, Signed};
use num_bigint::{BigInt, BigUint, ToBigInt, ToBigUint};

use crate::ion_data::{IonEq, IonOrd};
use crate::result::{illegal_operation, illegal_operation_raw, IonError};
use crate::types::{Coefficient, Sign, UInt};
use num_integer::Integer;
use num_traits::{ToPrimitive, Zero};
use std::convert::{TryFrom, TryInto};
use std::fmt::{Display, Formatter};
use std::ops::Neg;

/// An arbitrary-precision Decimal type with a distinct representation of negative zero (`-0`).
#[derive(Clone, Debug)]
pub struct Decimal {
    // A Coefficient is a Sign/UInteger pair supporting integers of arbitrary size
    pub(crate) coefficient: Coefficient,
    pub(crate) exponent: i64,
}

impl Decimal {
    /// Constructs a new Decimal with the provided components. The value of the decimal is
    ///    (coefficient * 10^exponent) * (if sign == Sign::Negative { -1 } else { 1 })
    pub fn new<I: Into<Coefficient>>(coefficient: I, exponent: i64) -> Decimal {
        let coefficient = coefficient.into();
        Decimal {
            coefficient,
            exponent,
        }
    }

    /// Returns scale of the Decimal value
    /// If zero or positive, a scale indicates the number of digits to the right of the decimal point.
    /// If negative, the unscaled value of the number is multiplied by ten to the power of the negation of the scale.
    /// For example, a scale of -3 means the unscaled value is multiplied by 1000.
    pub fn scale(&self) -> i64 {
        self.exponent.neg()
    }

    /// Returns the number of digits in the non-scaled integer representation of the decimal.
    pub fn precision(&self) -> u64 {
        if self.exponent > 0 {
            return self.coefficient.number_of_decimal_digits() + self.exponent as u64;
        }
        self.coefficient.number_of_decimal_digits()
    }

    /// Constructs a Decimal with the value `-0d0`. This is provided as a convenience method
    /// because Rust will ignore a unary minus when it is applied to an zero literal (`-0`).
    pub fn negative_zero() -> Decimal {
        Decimal::negative_zero_with_exponent(0)
    }

    /// Constructs a Decimal with a coefficient of `-0` and the specified exponent. This function
    /// is provided as a convenience method because Rust will ignore a unary minus when it is
    /// applied to a zero literal (`-0`).
    pub fn negative_zero_with_exponent(exponent: i64) -> Decimal {
        let coefficient = Coefficient::negative_zero();
        Decimal {
            coefficient,
            exponent,
        }
    }

    /// Returns `true` if this Decimal is a zero of any sign or exponent.
    pub fn is_zero(&self) -> bool {
        match self.coefficient.magnitude() {
            UInt::U64(0) => true,
            UInt::BigUInt(m) => m.is_zero(),
            _ => false,
        }
    }

    /// Returns true if this Decimal's coefficient has a negative sign AND a magnitude greater than
    /// zero. Otherwise, returns false. (Negative zero returns false.)
    pub fn is_less_than_zero(&self) -> bool {
        match (self.coefficient.sign(), self.coefficient.magnitude()) {
            (Sign::Negative, UInt::U64(m)) if *m > 0 => true,
            (Sign::Negative, UInt::BigUInt(m)) if m > &BigUint::zero() => true,
            _ => false,
        }
    }

    /// Semantically identical to `self >= Decimal::new(1, 0)`, but much cheaper to compute.
    pub(crate) fn is_greater_than_or_equal_to_one(&self) -> bool {
        // If the coefficient has a magnitude of zero, the Decimal is a zero of some precision
        // and so is not >= 1.
        match &self.coefficient.magnitude {
            UInt::U64(magnitude) if magnitude.is_zero() => return false,
            UInt::BigUInt(magnitude) if magnitude.is_zero() => return false,
            _ => {}
        }

        // If the coefficient is non-zero, look at the exponent. A positive exponent means the
        // value has to be >= 1.
        if self.exponent >= 0 {
            return true;
        }

        // If the exponent is negative, we have to see whether if its magnitude outweighs the
        // magnitude of the coefficient.
        let num_coefficient_decimal_digits = self.coefficient.number_of_decimal_digits();
        num_coefficient_decimal_digits > self.exponent.unsigned_abs()
    }

    // Determines whether the first decimal value is greater than, equal to, or less than
    // the second decimal value.
    fn compare(d1: &Decimal, d2: &Decimal) -> Ordering {
        if d1.is_zero() && d2.is_zero() {
            // Ignore the sign/exponent if they're both some flavor of zero.
            return Ordering::Equal;
        }
        // Even if the exponents are wildly different, disagreement in the coefficient's signs
        // still tells us which value is bigger. (This approach causes `-0` to be considered less
        // than `0`; see the to-do comment on this method.)
        let sign_cmp = d1.coefficient.sign().cmp(&d2.coefficient.sign());
        if sign_cmp != Ordering::Equal {
            return sign_cmp;
        }

        // If the signs are the same, compare their magnitudes.
        let ordering = Decimal::compare_magnitudes(d1, d2);

        if d1.coefficient.sign() == Sign::Positive {
            // If the values are both positive, use the magnitudes' ordering.
            ordering
        } else {
            // If the values are both negative, reverse the magnitudes' ordering.
            // For example: -100 has a greater magnitude (i.e. absolute value) than -99,
            //              but -99 is the larger number.
            ordering.reverse()
        }
    }

    // Compare the magnitudes (absolute values) of the provided decimal values.
    fn compare_magnitudes(d1: &Decimal, d2: &Decimal) -> Ordering {
        // If the exponents match, we can compare the two coefficients directly.
        if d1.exponent == d2.exponent {
            return d1.coefficient.magnitude().cmp(d2.coefficient.magnitude());
        }

        // If the exponents don't match, we need to scale one of the magnitudes to match the other
        // for comparison. For example, when comparing 16e3 and 1600e1, we can't compare the
        // magnitudes (16 and 1600) directly. Instead, we need to multiply 16 by 10^2 to compensate
        // for the difference in their exponents (3-1). Then we'll be comparing 1600 to 1600,
        // and can safely conclude that they are equal.
        if d1.exponent > d2.exponent {
            Self::compare_scaled_coefficients(d1, d2)
        } else {
            Self::compare_scaled_coefficients(d2, d1).reverse()
        }
    }

    // Scales up the coefficient associated with a greater exponent and compares it with the
    // other coefficient. `d1` must have a larger exponent than `d2`.
    fn compare_scaled_coefficients(d1: &Decimal, d2: &Decimal) -> Ordering {
        let exponent_delta = d1.exponent - d2.exponent;
        // d1 has a larger exponent, so scale up its coefficient to match d2's exponent.
        // For example, when comparing these values of d1 and d2:
        //     d1 =  8 * 10^3
        //     d2 = 80 * 10^2
        // d1 has the larger exponent (3). We need to scale its coefficient up to d2's 10^2 scale.
        // We do this by multiplying it times 10^exponent_delta, which is 1 in this case.
        // This lets us compare 80 and 80, determining that the decimals are equal.
        let mut scaled_coefficient: BigUint = d1.coefficient.magnitude().to_biguint().unwrap();
        scaled_coefficient *= BigUint::from(10u64).pow(exponent_delta as u32);
        UInt::BigUInt(scaled_coefficient).cmp(d2.coefficient.magnitude())
    }

    /// Extract the integer and fractional parts and the exponents of this as a `(BigInt, (BigInt, i64))`
    ///
    /// ```ignore
    /// # use num_bigint::BigInt;
    /// # use ion_rs::Decimal;
    /// let d1: Decimal = Decimal::new(123456789, -2);
    /// let (int_part, (frac_part, exponent)) = d1.into_parts();
    /// assert_eq!(int_part, BigInt::from(1234567u64));
    /// assert_eq!(frac_part, BigInt::from(89));
    /// assert_eq!(exponent, -2);
    /// ```
    pub(crate) fn into_parts(self) -> (BigInt, (BigInt, i64)) {
        let magnitude: BigInt = self.coefficient.try_into().unwrap();
        if self.exponent.is_zero() {
            (magnitude, (BigInt::zero(), 0))
        } else if self.exponent.is_negative() {
            let divisor = BigInt::from(10u64).pow((-self.exponent) as u32);
            let (i, f) = magnitude.div_rem(&divisor);
            (i, (f, self.exponent))
        } else {
            let multiplicand = BigInt::from(10u64).pow(self.exponent as u32);
            (magnitude * multiplicand, (BigInt::zero(), 0))
        }
    }

    /// Extract the integer and fractional parts of this as a `(BigInt, f64)`.
    /// Some precision is lost in the conversion of the fractional part to an `f64`.
    /// See also [`Self::into_parts`]
    ///
    /// ```ignore
    /// # use num_bigint::BigInt;
    /// # use ion_rs::Decimal;
    /// let d1: Decimal = Decimal::new(123456789, -2);
    /// let (int_part, frac_part) = d1.into_parts_lossy();
    /// assert_eq!(int_part, BigInt::from(1234567u64));
    /// assert_eq!(frac_part, 0.89);
    /// ```
    pub(crate) fn into_parts_lossy(self) -> (BigInt, f64) {
        // turn a fractional part and exponent (e.g., `123` & -3) into an f64 less than `0` (e.g., `0.123`)
        fn to_fract(frac: BigInt, exponent: i64) -> f64 {
            if frac.is_zero() {
                0.0
            } else {
                frac.to_f64().unwrap() / 10f64.powi(max(0, -exponent) as i32)
            }
        }
        let (i, (f, e)) = self.into_parts();
        (i, to_fract(f, e))
    }

    /// Returns ([`num_bigint::BigInt`], [`f64`]) representing the differences
    /// between integer and fractional components of d1 & d2 respectively.
    ///
    /// This is largely useful to compare two [`Decimal`] values without the full suite of mathematical
    /// and comparison operations.
    ///
    /// ```ignore
    /// # use num_bigint::BigInt;
    /// # use ion_rs::Decimal;
    /// let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(Decimal::new(123, 0), Decimal::new(12, 1));
    /// assert_eq!(diff_integer, BigInt::from(3));
    /// assert_eq!(diff_fractional, 0.0);
    ///
    /// let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(Decimal::new(12345, -2), Decimal::new(123, 0));
    /// assert_eq!(diff_integer, BigInt::from(0));
    /// assert_eq!(diff_fractional, 0.45);
    /// ```
    pub(crate) fn difference_by_parts_lossy(d1: &Decimal, d2: &Decimal) -> (BigInt, f64) {
        let (d1_int, d1_frac) = d1.clone().into_parts_lossy();
        let (d2_int, d2_frac) = d2.clone().into_parts_lossy();

        ((d1_int - d2_int), (d1_frac - d2_frac))
    }
}

impl PartialEq for Decimal {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}

impl Eq for Decimal {}

impl IonEq for Decimal {
    fn ion_eq(&self, other: &Self) -> bool {
        self.exponent == other.exponent && self.coefficient == other.coefficient
    }
}

impl IonOrd for Decimal {
    // Numerical order (least to greatest) and then by number of significant figures (least to greatest)
    fn ion_cmp(&self, other: &Self) -> Ordering {
        let sign_cmp = self.coefficient.sign().cmp(&other.coefficient.sign());
        if sign_cmp != Ordering::Equal {
            return sign_cmp;
        }

        // If the signs are the same, compare their magnitudes.
        let ordering = Decimal::compare_magnitudes(self, other);
        if ordering != Ordering::Equal {
            return match self.coefficient.sign {
                Sign::Negative => ordering.reverse(),
                Sign::Positive => ordering,
            };
        };
        // Finally, compare the number of significant figures.
        // Since we know the numeric value is the same, we only need to look at the exponents here.
        self.exponent.cmp(&other.exponent).reverse()
    }
}

impl PartialOrd for Decimal {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Decimal {
    fn cmp(&self, other: &Self) -> Ordering {
        Decimal::compare(self, other)
    }
}

macro_rules! impl_decimal_from_unsigned_primitive_integer {
    ($($t:ty),*) => ($(
        impl From<$t> for Decimal {
            fn from(value: $t) -> Self {
                Decimal::new(value as u64, 0)
            }
        }
    )*)
}
impl_decimal_from_unsigned_primitive_integer!(u8, u16, u32, u64, usize);

macro_rules! impl_decimal_from_signed_primitive_integer {
    ($($t:ty),*) => ($(
        impl From<$t> for Decimal {
            fn from(value: $t) -> Self {
                let sign = if value < 0 {Sign::Negative} else {Sign::Positive};
                // Discard the sign and convert the value to a u64.
                let magnitude: u64 = value.checked_abs()
                        .and_then(|v| Some(v.abs() as u64))
                        // If .abs() fails, it's because <$t>::MIN.abs() cannot be represented
                        // as a $t. We can handle this case by simply using <$>::MAX + 1
                        .unwrap_or_else(|| (<$t>::MAX as u64) + 1);
                let coefficient = Coefficient::new(sign, magnitude);
                Decimal::new(coefficient, 0)
            }
        }
    )*)
}
impl_decimal_from_signed_primitive_integer!(i8, i16, i32, i64, isize);

impl TryFrom<f32> for Decimal {
    type Error = IonError;

    fn try_from(value: f32) -> Result<Self, Self::Error> {
        // Defer to the f64 implementation of `TryInto`
        (value as f64).try_into()
    }
}

impl TryFrom<f64> for Decimal {
    type Error = IonError;
    /// Attempts to create a Decimal from an f64. Returns an Error if the f64 being
    /// converted is a special value, including:
    ///   * Infinity
    ///   * Negative infinity
    ///   * NaN (not-a-number)
    /// Otherwise, returns Ok.
    ///
    /// Because Decimal can represent negative zero, f64::neg_zero() IS supported.
    ///
    /// NOTE: While the resulting decimal will be a very close approximation of the original f64's
    ///       value, this is an inherently lossy operation. Floating point values do not encode a
    ///       precision. When converting an f64 to a Decimal, a precision for the new Decimal must
    ///       be chosen somewhat arbitrarily. Do NOT rely on the precision of the resulting Decimal.
    ///       This implementation may change without notice.
    fn try_from(value: f64) -> Result<Self, Self::Error> {
        if value.is_infinite() {
            if value.is_sign_negative() {
                return illegal_operation("Cannot convert f64 negative infinity to Decimal.");
            } else {
                return illegal_operation("Cannot convert f64 infinity to Decimal.");
            }
        } else if value.is_nan() {
            return illegal_operation("Cannot convert f64 NaN (not-a-number) to Decimal.");
        }

        // You can't use the `log10` operation on a zero value, so check for these cases explicitly.
        if value == 0f64 {
            //    ^- Positive and negative zero are mathematically equivalent,
            //       so we can use `==` here to check for both.
            if value.is_sign_negative() {
                return Ok(Decimal::negative_zero());
            }
            return Ok(Decimal::new(0, 0));
        }

        fn try_convert(coefficient: f64, exponent: i64) -> Result<Decimal, IonError> {
            // prefer a compact representation for the coefficient; fallback to bigint
            let coefficient: Coefficient = if !coefficient.trunc().is_zero()
                && coefficient.abs() <= i64::MAX as f64
            {
                (coefficient as i64).into()
            } else {
                coefficient
                    .to_bigint()
                    .ok_or_else(|| illegal_operation_raw("Cannot convert large f64 to Decimal."))?
                    .try_into()?
            };

            Ok(Decimal::new(coefficient, exponent))
        }

        // If the f64 is an integer value, we can convert it to a decimal trivially.
        // The `fract()` method returns the fractional part of the value.
        // If fract() is zero, then `value` is an integer.
        if value.fract().is_zero() {
            try_convert(value, 0)
        } else {
            // If the f64 is not a round number, attempt to preserve as many decimal places of precision
            // as possible.

            // f64::DIGITS is the number of base 10 digits of fractional precision in an f64: 15
            const PRECISION: u32 = f64::DIGITS;

            // For `value.abs() >= 1` -> 0
            // Else -> number of decimal `0` before the first non-`0` after the decimal point
            let leading_zeroes = (-1.0 - (value % 1.0).abs().log10().floor()).max(0.0) as u32;
            let precision = (leading_zeroes + PRECISION).clamp(0, f64::MAX_10_EXP as u32);

            let coefficient = value * 10f64.powi(precision as i32);
            let exponent = -(precision as i64);
            try_convert(coefficient, exponent)
        }
    }
}

impl Display for Decimal {
    #[rustfmt::skip] // https://github.com/rust-lang/rustfmt/issues/3255
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        // Inspired by the formatting conventions of Java's BigDecimal.toString()
        const WIDE_NUMBER: usize = 6; // if you think about it, six is a lot 🙃

        let digits = &*self.coefficient.magnitude.to_string();
        let len = digits.len();
        // The index of the decimal point, relative to the magnitude representation
        //       0123                                                       01234
        // Given ABCDd-2, the decimal gets inserted at position 2, yielding AB.CD
        let dot_index = len as i64 + self.exponent;

        if self.coefficient.sign == Sign::Negative {
            write!(f, "-").unwrap();
        };

        if self.exponent == 0 && len > WIDE_NUMBER { // e.g. A.BCDEFGd6
            write!(f, "{}.{}d{}", &digits[0..1], &digits[1..len], (dot_index - 1))
        } else if self.exponent == 0 { // e.g. ABC.
            write!(f, "{}.", &digits)
        } else if self.exponent >= 0 { // e.g. ABCd1
            write!(f, "{}d{}", &digits, self.exponent)
        } else { // exponent < 0, there is a fractional component
            if dot_index > 0 { // e.g. A.BC or AB.C
                let dot_index = dot_index as usize;
                write!(f, "{}.{}", &digits[0..dot_index], &digits[dot_index..len])
            } else if dot_index > -(WIDE_NUMBER as i64) { // e.g. 0.ABC or 0.000ABC
                let width = dot_index.unsigned_abs() as usize + len;
                write!(f, "0.{digits:0>width$}", width = width, digits = digits)
            } else { // e.g. A.BCd-12
                write!(f, "{}.{}d{}", &digits[0..1], &digits[1..len], (dot_index - 1))
            }
        }
    }
}

/// Make a Decimal from a BigDecimal. This is a lossless operation.
impl From<BigDecimal> for Decimal {
    fn from(value: BigDecimal) -> Self {
        let sign = if value.sign() == num_bigint::Sign::Minus {
            Sign::Negative
        } else {
            Sign::Positive
        };
        let (big_int_coefficient, negative_exponent) = value.as_bigint_and_exponent();
        // Discard the BigInt coefficient's sign before converting it to a BigUint to ensure
        // the conversion succeeds.
        let magnitude: BigUint = big_int_coefficient.abs().to_biguint().unwrap();
        // From the BigInt docs: "Note that a positive exponent indicates a negative power of 10."
        let exponent = -negative_exponent;

        Decimal::new(Coefficient::new(sign, magnitude), exponent)
    }
}

impl TryFrom<Decimal> for BigDecimal {
    type Error = IonError;
    /// Attempts to create a BigDecimal from a Decimal. Returns an Error if the Decimal being
    /// converted is a negative zero, which BigDecimal cannot represent. Returns Ok otherwise.
    fn try_from(value: Decimal) -> Result<Self, Self::Error> {
        // The Coefficient type cannot be converted to a BigInt if it is a negative zero.
        let coefficient_big_int: BigInt = value.coefficient.try_into()?;
        Ok(BigDecimal::new(coefficient_big_int, -value.exponent))
    }
}

#[cfg(test)]
mod decimal_tests {
    use crate::result::IonResult;
    use crate::types::{Coefficient, Decimal, Sign, UInt};
    use bigdecimal::BigDecimal;
    use num_bigint::BigUint;

    use num_traits::{Float, ToPrimitive};
    use std::cmp::Ordering;
    use std::convert::TryInto;
    use std::fmt::Write;

    use crate::ion_data::IonEq;

    use rstest::*;

    #[rstest]
    #[case(Decimal::new(123, 1), "123d1")]
    #[case(Decimal::new(123, 0), "123.")]
    #[case(Decimal::new(-123,  0),"-123.")]
    #[case(Decimal::new( 123, -1),  "12.3")]
    #[case(Decimal::new( 123, -3),   "0.123")]
    #[case(Decimal::new(-123, -5),  "-0.00123")]
    #[case(Decimal::new( 123, -5),   "0.00123")]
    #[case(Decimal::new( 123, -10),  "1.23d-8")]
    #[case(Decimal::new(-123, -10), "-1.23d-8")]
    fn test_display(#[case] decimal: Decimal, #[case] expected: &str) {
        let mut buffer = String::new();
        write!(buffer, "{decimal}").unwrap();
        assert_eq!(buffer.as_str(), expected);
    }

    #[test]
    fn test_decimal_eq_negative_zeros() {
        // Decimal zeros of any sign/exponent are mathematically equal.
        assert_eq!(Decimal::negative_zero(), Decimal::negative_zero());
        assert_eq!(
            Decimal::negative_zero_with_exponent(2),
            Decimal::negative_zero_with_exponent(7)
        );
        assert_eq!(
            Decimal::new(0, 0),
            Decimal::new(Coefficient::new(Sign::Negative, 0), 0)
        );
    }

    #[test]
    fn test_decimal_ion_eq_negative_zeros() {
        // To be IonEq, decimal zeros must have the same sign and exponent.
        assert!(Decimal::negative_zero().ion_eq(&Decimal::negative_zero()));
        assert!(!Decimal::negative_zero_with_exponent(2)
            .ion_eq(&Decimal::negative_zero_with_exponent(7)));
        assert!(!Decimal::new(0, 0).ion_eq(&Decimal::new(Coefficient::new(Sign::Negative, 0), 0)));
    }

    #[rstest]
    // Each tuple is a coefficient/exponent pair that will be used to construct a Decimal.
    // The boolean indicates whether the two Decimals are expected to be equal.
    #[case((80, 2), (80, 2), true)]
    #[case((124, -2), (1240, -3), true)]
    #[case((0, 0), (0, 0), true)]
    #[case((0, -2), (0, 3), true)]
    #[case((0, 2), (0, 5), true)]
    fn test_decimal_eq<I: Into<Coefficient>>(
        #[case] components1: (I, i64),
        #[case] components2: (I, i64),
        #[case] is_equal: bool,
    ) {
        let decimal1 = Decimal::new(components1.0.into(), components1.1);
        let decimal2 = Decimal::new(components2.0.into(), components2.1);
        assert_eq!(decimal1 == decimal2, is_equal);
    }

    #[rstest]
    // Each tuple is a coefficient/exponent pair that will be used to construct a Decimal.
    // The boolean indicates whether the two Decimals are expected to be Ion-equal.
    #[case((80, 2), (80, 2), true)]
    #[case((124, -2), (124, -2), true)]
    #[case((-124, -2), (-124, -2), true)]
    #[case((124, -2), (1240, -3), false)]
    #[case((0, 0), (0, 0), true)]
    #[case((0, -2), (0, -3), false)]
    #[case((0, -2), (0, 3), false)]
    #[case((0, -2), (0, -2), true)]
    #[case((0, 2), (0, 5), false)]
    fn test_decimal_ion_eq<I: Into<Coefficient>>(
        #[case] components1: (I, i64),
        #[case] components2: (I, i64),
        #[case] ion_eq_expected: bool,
    ) {
        let decimal1 = Decimal::new(components1.0.into(), components1.1);
        let decimal2 = Decimal::new(components2.0.into(), components2.1);
        assert_eq!(decimal1.ion_eq(&decimal2), ion_eq_expected);
    }

    #[rstest]
    // Each tuple is a coefficient/exponent pair that will be used to construct a Decimal
    #[case((80, 3), Ordering::Equal, (80, 3))]
    #[case((80, 3), Ordering::Greater, (-80, 3))]
    #[case((80, 3), Ordering::Greater, (8, 3))]
    #[case((80, 4), Ordering::Greater, (8, 3))]
    #[case((-80, 4), Ordering::Equal, (-80, 4))]
    #[case((-80, 4), Ordering::Less, (-8, 3))]
    #[case((-80, 4), Ordering::Equal, (-8, 5))]
    #[case((-1000, -1), Ordering::Less, (-99_999_999_999i64, -9))]
    #[case((1000, -1), Ordering::Greater, (99_999_999_999i64, -9))]
    fn test_decimal_ord<I: Into<Coefficient>>(
        #[case] components1: (I, i64),
        #[case] ordering: Ordering,
        #[case] components2: (I, i64),
    ) {
        let decimal1 = Decimal::new(components1.0.into(), components1.1);
        let decimal2 = Decimal::new(components2.0.into(), components2.1);
        assert_eq!(decimal1.cmp(&decimal2), ordering);
        // Make sure the inverse relationship holds
        assert_eq!(decimal2.cmp(&decimal1), ordering.reverse());
    }

    #[rstest]
    #[case(0f64, Decimal::new(0, 0))]
    #[case(f64::neg_zero(), Decimal::negative_zero())]
    #[case(1f64, Decimal::new(1, 0))]
    #[case(-1f64, Decimal::new(-1, 0))]
    #[case(10f64, Decimal::new(1, 1))]
    #[case(100f64, Decimal::new(1, 2))]
    #[case(1.5f64, Decimal::new(15, -1))]
    #[case(-1.5f64, Decimal::new(-15, -1))]
    #[case(3.141592659f64, Decimal::new(3141592659i64, -9))]
    #[case(-3.141592659f64, Decimal::new(-3141592659i64, -9))]
    fn test_decimal_try_from_f64_ok(#[case] value: f64, #[case] expected: Decimal) {
        let actual: Decimal = value.try_into().unwrap();
        assert_eq!(actual, expected);
    }

    #[test]
    fn test_difference_by_parts_lossy() {
        let d1: Decimal = Decimal::new(123456789, -2);
        let (int_part, frac_part) = d1.into_parts_lossy();
        assert_eq!(int_part, num_bigint::BigInt::from(1234567u64));
        assert_eq!(frac_part, 0.89);

        let d1: Decimal = Decimal::new(123456789, -2);
        let d10: Decimal = Decimal::new(123456789, -1);
        let d100: Decimal = Decimal::new(123456789, 0);

        // diff d1 with d1
        let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(&d1, &d1);
        // 1234567 - 1234567 -> 0
        assert_eq!(diff_integer, 0.into());
        // 89 - 89 -> 0
        assert_eq!(diff_fractional, 0.0);

        // diff d10 with d1
        let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(&d10, &d1);
        // 12345678 - 1234567 -> 11111111
        assert_eq!(diff_integer, 11111111.into());
        // .9 - .89 -> .01
        let expected = 0.01;
        // ideally, this would be based on ULPs, not epsilon
        //  Cf. https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
        let relative_error = ((diff_fractional - expected) / expected).abs();
        assert!(relative_error <= 10.0 * f64::EPSILON);

        // diff d100 with d1
        let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(&d100, &d1);
        // 123456789 - 1234567 -> 122222222
        assert_eq!(diff_integer, 122222222.into());
        // .0 - .89 -> -.89
        let expected = -0.89;
        // ideally, this would be based on ULPs, not epsilon
        //  Cf. https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
        let relative_error = ((diff_fractional - expected) / expected).abs();
        assert!(relative_error <= 10.0 * f64::EPSILON);

        // diff 1.000_000_2 with 1.2
        let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(
            &Decimal::new(10_000_002, -7),
            &Decimal::new(12, -1),
        );
        // 1 - 1 -> 0
        assert_eq!(diff_integer, 0.into());
        // 0.0000002 - 0.2 -> -0.1999998
        let expected = -0.1999998;
        // ideally, this would be based on ULPs, not epsilon
        //  Cf. https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
        let relative_error = ((diff_fractional - expected) / expected).abs();
        assert!(relative_error <= 10.0 * f64::EPSILON);
    }

    #[test]
    fn test_decimal_try_from_large_f64_ok() {
        let actual: Decimal = 1234567.89f64.try_into().unwrap();
        let expected = Decimal::new(123456789, -2);

        let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
        assert_eq!(diff_int, 0.into(), "integer component expected equal");
        assert!(diff_fract < 100_000.into()); // 100,000 arbitrarily chosen as 1/3 of the 15 decimal digits of precision

        // MAX f64 - e.g., 1.7976931348623157e+308_f64
        let actual: Decimal = f64::MAX.try_into().unwrap();
        let expected = Decimal::new(0, 0);

        let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
        assert_eq!(
            UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
            309,
            "f64::MAX should have 309 decimal digits"
        );
        assert_eq!(diff_fract, 0.into());

        // MIN f64 - e.g., -1.7976931348623157e+308_f64
        let actual: Decimal = f64::MIN.try_into().unwrap();
        let expected = Decimal::new(0, 0);

        let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
        assert_eq!(
            UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
            309,
            "f64::MIN should have 309 decimal digits"
        );
        assert_eq!(diff_fract, 0.into());
    }

    #[test]
    fn test_decimal_try_from_very_small_f64_ok() {
        let actual: Decimal = 0.000_000_000_000_000_1.try_into().unwrap();
        let expected = Decimal::new(1, -16);

        let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
        assert_eq!(
            UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
            1
        );
        assert_eq!(diff_fract, 0.into());

        // MIN_POSITIVE f64 - e.g., 2.2250738585072014e-308_f64
        let actual: Decimal = f64::MIN_POSITIVE.try_into().unwrap();
        let expected = Decimal::new(2, -308);

        let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
        assert_eq!(
            UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
            1
        );
        assert_eq!(diff_fract, 0.into());
    }

    #[rstest]
    #[case::positive_infinity(f64::infinity())]
    #[case::negative_infinity(f64::neg_infinity())]
    #[case::nan(f64::nan())]
    fn test_decimal_try_from_f64_err(#[case] value: f64) {
        let conversion_result: IonResult<Decimal> = value.try_into();
        assert!(conversion_result.is_err());
    }

    #[test]
    fn test_convert_to_big_decimal() {
        let decimal = Decimal::new(-24601, -3);
        let big_decimal: BigDecimal = decimal.try_into().unwrap();
        let double = big_decimal.to_f64().unwrap();
        assert_eq!(-24.601, double);

        // Any form of negative zero will fail to be converted.

        let decimal = Decimal::negative_zero();
        let conversion_result: IonResult<BigDecimal> = decimal.try_into();
        assert!(conversion_result.is_err());

        let decimal = Decimal::negative_zero_with_exponent(6);
        let conversion_result: IonResult<BigDecimal> = decimal.try_into();
        assert!(conversion_result.is_err());

        let decimal = Decimal::negative_zero_with_exponent(-6);
        let conversion_result: IonResult<BigDecimal> = decimal.try_into();
        assert!(conversion_result.is_err());
    }

    #[test]
    fn test_convert_from_big_decimal() {
        let big_decimal: BigDecimal = BigDecimal::new((-24601).into(), 3);
        let actual: Decimal = big_decimal.into();
        let expected = Decimal::new(-24601, -3);
        assert_eq!(actual, expected);
    }

    #[rstest]
    #[case(Decimal::new(-24601, -3), 3)]
    #[case(Decimal::new(u64::MAX, -5), 5)]
    #[case(Decimal::new(u64::MAX, 0), 0)]
    #[case(Decimal::new(4, 3), -3)]
    fn test_scale(#[case] value: Decimal, #[case] expected: i64) {
        assert_eq!(value.scale(), expected)
    }

    #[rstest]
    #[case(Decimal::new(-24601, -3), 5)]
    #[case(Decimal::new(5, -3), 1)]
    #[case(Decimal::new(24, -5), 2)]
    #[case(Decimal::new(0, 0), 1)]
    #[case(Decimal::new(234, 0), 3)]
    #[case(Decimal::new(-234, 2), 5)]
    #[case(Decimal::new(BigUint::from(u64::MAX), 3), 23)]
    #[case(Decimal::new(BigUint::from(u128::MAX), -2), 39)]
    fn test_precision(#[case] value: Decimal, #[case] expected: u64) {
        assert_eq!(value.precision(), expected);
    }
}