1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
use std::cmp::{max, Ordering};
use bigdecimal::{BigDecimal, Signed};
use num_bigint::{BigInt, BigUint, ToBigInt, ToBigUint};
use crate::ion_data::{IonEq, IonOrd};
use crate::result::{illegal_operation, illegal_operation_raw, IonError};
use crate::types::{Coefficient, Sign, UInt};
use num_integer::Integer;
use num_traits::{ToPrimitive, Zero};
use std::convert::{TryFrom, TryInto};
use std::fmt::{Display, Formatter};
use std::ops::Neg;
/// An arbitrary-precision Decimal type with a distinct representation of negative zero (`-0`).
#[derive(Clone, Debug)]
pub struct Decimal {
// A Coefficient is a Sign/UInteger pair supporting integers of arbitrary size
pub(crate) coefficient: Coefficient,
pub(crate) exponent: i64,
}
impl Decimal {
/// Constructs a new Decimal with the provided components. The value of the decimal is
/// (coefficient * 10^exponent) * (if sign == Sign::Negative { -1 } else { 1 })
pub fn new<I: Into<Coefficient>>(coefficient: I, exponent: i64) -> Decimal {
let coefficient = coefficient.into();
Decimal {
coefficient,
exponent,
}
}
/// Returns scale of the Decimal value
/// If zero or positive, a scale indicates the number of digits to the right of the decimal point.
/// If negative, the unscaled value of the number is multiplied by ten to the power of the negation of the scale.
/// For example, a scale of -3 means the unscaled value is multiplied by 1000.
pub fn scale(&self) -> i64 {
self.exponent.neg()
}
/// Returns the number of digits in the non-scaled integer representation of the decimal.
pub fn precision(&self) -> u64 {
if self.exponent > 0 {
return self.coefficient.number_of_decimal_digits() + self.exponent as u64;
}
self.coefficient.number_of_decimal_digits()
}
/// Constructs a Decimal with the value `-0d0`. This is provided as a convenience method
/// because Rust will ignore a unary minus when it is applied to an zero literal (`-0`).
pub fn negative_zero() -> Decimal {
Decimal::negative_zero_with_exponent(0)
}
/// Constructs a Decimal with a coefficient of `-0` and the specified exponent. This function
/// is provided as a convenience method because Rust will ignore a unary minus when it is
/// applied to a zero literal (`-0`).
pub fn negative_zero_with_exponent(exponent: i64) -> Decimal {
let coefficient = Coefficient::negative_zero();
Decimal {
coefficient,
exponent,
}
}
/// Returns `true` if this Decimal is a zero of any sign or exponent.
pub fn is_zero(&self) -> bool {
match self.coefficient.magnitude() {
UInt::U64(0) => true,
UInt::BigUInt(m) => m.is_zero(),
_ => false,
}
}
/// Returns true if this Decimal's coefficient has a negative sign AND a magnitude greater than
/// zero. Otherwise, returns false. (Negative zero returns false.)
pub fn is_less_than_zero(&self) -> bool {
match (self.coefficient.sign(), self.coefficient.magnitude()) {
(Sign::Negative, UInt::U64(m)) if *m > 0 => true,
(Sign::Negative, UInt::BigUInt(m)) if m > &BigUint::zero() => true,
_ => false,
}
}
/// Semantically identical to `self >= Decimal::new(1, 0)`, but much cheaper to compute.
pub(crate) fn is_greater_than_or_equal_to_one(&self) -> bool {
// If the coefficient has a magnitude of zero, the Decimal is a zero of some precision
// and so is not >= 1.
match &self.coefficient.magnitude {
UInt::U64(magnitude) if magnitude.is_zero() => return false,
UInt::BigUInt(magnitude) if magnitude.is_zero() => return false,
_ => {}
}
// If the coefficient is non-zero, look at the exponent. A positive exponent means the
// value has to be >= 1.
if self.exponent >= 0 {
return true;
}
// If the exponent is negative, we have to see whether if its magnitude outweighs the
// magnitude of the coefficient.
let num_coefficient_decimal_digits = self.coefficient.number_of_decimal_digits();
num_coefficient_decimal_digits > self.exponent.unsigned_abs()
}
// Determines whether the first decimal value is greater than, equal to, or less than
// the second decimal value.
fn compare(d1: &Decimal, d2: &Decimal) -> Ordering {
if d1.is_zero() && d2.is_zero() {
// Ignore the sign/exponent if they're both some flavor of zero.
return Ordering::Equal;
}
// Even if the exponents are wildly different, disagreement in the coefficient's signs
// still tells us which value is bigger. (This approach causes `-0` to be considered less
// than `0`; see the to-do comment on this method.)
let sign_cmp = d1.coefficient.sign().cmp(&d2.coefficient.sign());
if sign_cmp != Ordering::Equal {
return sign_cmp;
}
// If the signs are the same, compare their magnitudes.
let ordering = Decimal::compare_magnitudes(d1, d2);
if d1.coefficient.sign() == Sign::Positive {
// If the values are both positive, use the magnitudes' ordering.
ordering
} else {
// If the values are both negative, reverse the magnitudes' ordering.
// For example: -100 has a greater magnitude (i.e. absolute value) than -99,
// but -99 is the larger number.
ordering.reverse()
}
}
// Compare the magnitudes (absolute values) of the provided decimal values.
fn compare_magnitudes(d1: &Decimal, d2: &Decimal) -> Ordering {
// If the exponents match, we can compare the two coefficients directly.
if d1.exponent == d2.exponent {
return d1.coefficient.magnitude().cmp(d2.coefficient.magnitude());
}
// If the exponents don't match, we need to scale one of the magnitudes to match the other
// for comparison. For example, when comparing 16e3 and 1600e1, we can't compare the
// magnitudes (16 and 1600) directly. Instead, we need to multiply 16 by 10^2 to compensate
// for the difference in their exponents (3-1). Then we'll be comparing 1600 to 1600,
// and can safely conclude that they are equal.
if d1.exponent > d2.exponent {
Self::compare_scaled_coefficients(d1, d2)
} else {
Self::compare_scaled_coefficients(d2, d1).reverse()
}
}
// Scales up the coefficient associated with a greater exponent and compares it with the
// other coefficient. `d1` must have a larger exponent than `d2`.
fn compare_scaled_coefficients(d1: &Decimal, d2: &Decimal) -> Ordering {
let exponent_delta = d1.exponent - d2.exponent;
// d1 has a larger exponent, so scale up its coefficient to match d2's exponent.
// For example, when comparing these values of d1 and d2:
// d1 = 8 * 10^3
// d2 = 80 * 10^2
// d1 has the larger exponent (3). We need to scale its coefficient up to d2's 10^2 scale.
// We do this by multiplying it times 10^exponent_delta, which is 1 in this case.
// This lets us compare 80 and 80, determining that the decimals are equal.
let mut scaled_coefficient: BigUint = d1.coefficient.magnitude().to_biguint().unwrap();
scaled_coefficient *= BigUint::from(10u64).pow(exponent_delta as u32);
UInt::BigUInt(scaled_coefficient).cmp(d2.coefficient.magnitude())
}
/// Extract the integer and fractional parts and the exponents of this as a `(BigInt, (BigInt, i64))`
///
/// ```ignore
/// # use num_bigint::BigInt;
/// # use ion_rs::Decimal;
/// let d1: Decimal = Decimal::new(123456789, -2);
/// let (int_part, (frac_part, exponent)) = d1.into_parts();
/// assert_eq!(int_part, BigInt::from(1234567u64));
/// assert_eq!(frac_part, BigInt::from(89));
/// assert_eq!(exponent, -2);
/// ```
pub(crate) fn into_parts(self) -> (BigInt, (BigInt, i64)) {
let magnitude: BigInt = self.coefficient.try_into().unwrap();
if self.exponent.is_zero() {
(magnitude, (BigInt::zero(), 0))
} else if self.exponent.is_negative() {
let divisor = BigInt::from(10u64).pow((-self.exponent) as u32);
let (i, f) = magnitude.div_rem(&divisor);
(i, (f, self.exponent))
} else {
let multiplicand = BigInt::from(10u64).pow(self.exponent as u32);
(magnitude * multiplicand, (BigInt::zero(), 0))
}
}
/// Extract the integer and fractional parts of this as a `(BigInt, f64)`.
/// Some precision is lost in the conversion of the fractional part to an `f64`.
/// See also [`Self::into_parts`]
///
/// ```ignore
/// # use num_bigint::BigInt;
/// # use ion_rs::Decimal;
/// let d1: Decimal = Decimal::new(123456789, -2);
/// let (int_part, frac_part) = d1.into_parts_lossy();
/// assert_eq!(int_part, BigInt::from(1234567u64));
/// assert_eq!(frac_part, 0.89);
/// ```
pub(crate) fn into_parts_lossy(self) -> (BigInt, f64) {
// turn a fractional part and exponent (e.g., `123` & -3) into an f64 less than `0` (e.g., `0.123`)
fn to_fract(frac: BigInt, exponent: i64) -> f64 {
if frac.is_zero() {
0.0
} else {
frac.to_f64().unwrap() / 10f64.powi(max(0, -exponent) as i32)
}
}
let (i, (f, e)) = self.into_parts();
(i, to_fract(f, e))
}
/// Returns ([`num_bigint::BigInt`], [`f64`]) representing the differences
/// between integer and fractional components of d1 & d2 respectively.
///
/// This is largely useful to compare two [`Decimal`] values without the full suite of mathematical
/// and comparison operations.
///
/// ```ignore
/// # use num_bigint::BigInt;
/// # use ion_rs::Decimal;
/// let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(Decimal::new(123, 0), Decimal::new(12, 1));
/// assert_eq!(diff_integer, BigInt::from(3));
/// assert_eq!(diff_fractional, 0.0);
///
/// let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(Decimal::new(12345, -2), Decimal::new(123, 0));
/// assert_eq!(diff_integer, BigInt::from(0));
/// assert_eq!(diff_fractional, 0.45);
/// ```
pub(crate) fn difference_by_parts_lossy(d1: &Decimal, d2: &Decimal) -> (BigInt, f64) {
let (d1_int, d1_frac) = d1.clone().into_parts_lossy();
let (d2_int, d2_frac) = d2.clone().into_parts_lossy();
((d1_int - d2_int), (d1_frac - d2_frac))
}
}
impl PartialEq for Decimal {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for Decimal {}
impl IonEq for Decimal {
fn ion_eq(&self, other: &Self) -> bool {
self.exponent == other.exponent && self.coefficient == other.coefficient
}
}
impl IonOrd for Decimal {
// Numerical order (least to greatest) and then by number of significant figures (least to greatest)
fn ion_cmp(&self, other: &Self) -> Ordering {
let sign_cmp = self.coefficient.sign().cmp(&other.coefficient.sign());
if sign_cmp != Ordering::Equal {
return sign_cmp;
}
// If the signs are the same, compare their magnitudes.
let ordering = Decimal::compare_magnitudes(self, other);
if ordering != Ordering::Equal {
return match self.coefficient.sign {
Sign::Negative => ordering.reverse(),
Sign::Positive => ordering,
};
};
// Finally, compare the number of significant figures.
// Since we know the numeric value is the same, we only need to look at the exponents here.
self.exponent.cmp(&other.exponent).reverse()
}
}
impl PartialOrd for Decimal {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Decimal {
fn cmp(&self, other: &Self) -> Ordering {
Decimal::compare(self, other)
}
}
macro_rules! impl_decimal_from_unsigned_primitive_integer {
($($t:ty),*) => ($(
impl From<$t> for Decimal {
fn from(value: $t) -> Self {
Decimal::new(value as u64, 0)
}
}
)*)
}
impl_decimal_from_unsigned_primitive_integer!(u8, u16, u32, u64, usize);
macro_rules! impl_decimal_from_signed_primitive_integer {
($($t:ty),*) => ($(
impl From<$t> for Decimal {
fn from(value: $t) -> Self {
let sign = if value < 0 {Sign::Negative} else {Sign::Positive};
// Discard the sign and convert the value to a u64.
let magnitude: u64 = value.checked_abs()
.and_then(|v| Some(v.abs() as u64))
// If .abs() fails, it's because <$t>::MIN.abs() cannot be represented
// as a $t. We can handle this case by simply using <$>::MAX + 1
.unwrap_or_else(|| (<$t>::MAX as u64) + 1);
let coefficient = Coefficient::new(sign, magnitude);
Decimal::new(coefficient, 0)
}
}
)*)
}
impl_decimal_from_signed_primitive_integer!(i8, i16, i32, i64, isize);
impl TryFrom<f32> for Decimal {
type Error = IonError;
fn try_from(value: f32) -> Result<Self, Self::Error> {
// Defer to the f64 implementation of `TryInto`
(value as f64).try_into()
}
}
impl TryFrom<f64> for Decimal {
type Error = IonError;
/// Attempts to create a Decimal from an f64. Returns an Error if the f64 being
/// converted is a special value, including:
/// * Infinity
/// * Negative infinity
/// * NaN (not-a-number)
/// Otherwise, returns Ok.
///
/// Because Decimal can represent negative zero, f64::neg_zero() IS supported.
///
/// NOTE: While the resulting decimal will be a very close approximation of the original f64's
/// value, this is an inherently lossy operation. Floating point values do not encode a
/// precision. When converting an f64 to a Decimal, a precision for the new Decimal must
/// be chosen somewhat arbitrarily. Do NOT rely on the precision of the resulting Decimal.
/// This implementation may change without notice.
fn try_from(value: f64) -> Result<Self, Self::Error> {
if value.is_infinite() {
if value.is_sign_negative() {
return illegal_operation("Cannot convert f64 negative infinity to Decimal.");
} else {
return illegal_operation("Cannot convert f64 infinity to Decimal.");
}
} else if value.is_nan() {
return illegal_operation("Cannot convert f64 NaN (not-a-number) to Decimal.");
}
// You can't use the `log10` operation on a zero value, so check for these cases explicitly.
if value == 0f64 {
// ^- Positive and negative zero are mathematically equivalent,
// so we can use `==` here to check for both.
if value.is_sign_negative() {
return Ok(Decimal::negative_zero());
}
return Ok(Decimal::new(0, 0));
}
fn try_convert(coefficient: f64, exponent: i64) -> Result<Decimal, IonError> {
// prefer a compact representation for the coefficient; fallback to bigint
let coefficient: Coefficient = if !coefficient.trunc().is_zero()
&& coefficient.abs() <= i64::MAX as f64
{
(coefficient as i64).into()
} else {
coefficient
.to_bigint()
.ok_or_else(|| illegal_operation_raw("Cannot convert large f64 to Decimal."))?
.try_into()?
};
Ok(Decimal::new(coefficient, exponent))
}
// If the f64 is an integer value, we can convert it to a decimal trivially.
// The `fract()` method returns the fractional part of the value.
// If fract() is zero, then `value` is an integer.
if value.fract().is_zero() {
try_convert(value, 0)
} else {
// If the f64 is not a round number, attempt to preserve as many decimal places of precision
// as possible.
// f64::DIGITS is the number of base 10 digits of fractional precision in an f64: 15
const PRECISION: u32 = f64::DIGITS;
// For `value.abs() >= 1` -> 0
// Else -> number of decimal `0` before the first non-`0` after the decimal point
let leading_zeroes = (-1.0 - (value % 1.0).abs().log10().floor()).max(0.0) as u32;
let precision = (leading_zeroes + PRECISION).clamp(0, f64::MAX_10_EXP as u32);
let coefficient = value * 10f64.powi(precision as i32);
let exponent = -(precision as i64);
try_convert(coefficient, exponent)
}
}
}
impl Display for Decimal {
#[rustfmt::skip] // https://github.com/rust-lang/rustfmt/issues/3255
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
// Inspired by the formatting conventions of Java's BigDecimal.toString()
const WIDE_NUMBER: usize = 6; // if you think about it, six is a lot 🙃
let digits = &*self.coefficient.magnitude.to_string();
let len = digits.len();
// The index of the decimal point, relative to the magnitude representation
// 0123 01234
// Given ABCDd-2, the decimal gets inserted at position 2, yielding AB.CD
let dot_index = len as i64 + self.exponent;
if self.coefficient.sign == Sign::Negative {
write!(f, "-").unwrap();
};
if self.exponent == 0 && len > WIDE_NUMBER { // e.g. A.BCDEFGd6
write!(f, "{}.{}d{}", &digits[0..1], &digits[1..len], (dot_index - 1))
} else if self.exponent == 0 { // e.g. ABC.
write!(f, "{}.", &digits)
} else if self.exponent >= 0 { // e.g. ABCd1
write!(f, "{}d{}", &digits, self.exponent)
} else { // exponent < 0, there is a fractional component
if dot_index > 0 { // e.g. A.BC or AB.C
let dot_index = dot_index as usize;
write!(f, "{}.{}", &digits[0..dot_index], &digits[dot_index..len])
} else if dot_index > -(WIDE_NUMBER as i64) { // e.g. 0.ABC or 0.000ABC
let width = dot_index.unsigned_abs() as usize + len;
write!(f, "0.{digits:0>width$}", width = width, digits = digits)
} else { // e.g. A.BCd-12
write!(f, "{}.{}d{}", &digits[0..1], &digits[1..len], (dot_index - 1))
}
}
}
}
/// Make a Decimal from a BigDecimal. This is a lossless operation.
impl From<BigDecimal> for Decimal {
fn from(value: BigDecimal) -> Self {
let sign = if value.sign() == num_bigint::Sign::Minus {
Sign::Negative
} else {
Sign::Positive
};
let (big_int_coefficient, negative_exponent) = value.as_bigint_and_exponent();
// Discard the BigInt coefficient's sign before converting it to a BigUint to ensure
// the conversion succeeds.
let magnitude: BigUint = big_int_coefficient.abs().to_biguint().unwrap();
// From the BigInt docs: "Note that a positive exponent indicates a negative power of 10."
let exponent = -negative_exponent;
Decimal::new(Coefficient::new(sign, magnitude), exponent)
}
}
impl TryFrom<Decimal> for BigDecimal {
type Error = IonError;
/// Attempts to create a BigDecimal from a Decimal. Returns an Error if the Decimal being
/// converted is a negative zero, which BigDecimal cannot represent. Returns Ok otherwise.
fn try_from(value: Decimal) -> Result<Self, Self::Error> {
// The Coefficient type cannot be converted to a BigInt if it is a negative zero.
let coefficient_big_int: BigInt = value.coefficient.try_into()?;
Ok(BigDecimal::new(coefficient_big_int, -value.exponent))
}
}
#[cfg(test)]
mod decimal_tests {
use crate::result::IonResult;
use crate::types::{Coefficient, Decimal, Sign, UInt};
use bigdecimal::BigDecimal;
use num_bigint::BigUint;
use num_traits::{Float, ToPrimitive};
use std::cmp::Ordering;
use std::convert::TryInto;
use std::fmt::Write;
use crate::ion_data::IonEq;
use rstest::*;
#[rstest]
#[case(Decimal::new(123, 1), "123d1")]
#[case(Decimal::new(123, 0), "123.")]
#[case(Decimal::new(-123, 0),"-123.")]
#[case(Decimal::new( 123, -1), "12.3")]
#[case(Decimal::new( 123, -3), "0.123")]
#[case(Decimal::new(-123, -5), "-0.00123")]
#[case(Decimal::new( 123, -5), "0.00123")]
#[case(Decimal::new( 123, -10), "1.23d-8")]
#[case(Decimal::new(-123, -10), "-1.23d-8")]
fn test_display(#[case] decimal: Decimal, #[case] expected: &str) {
let mut buffer = String::new();
write!(buffer, "{decimal}").unwrap();
assert_eq!(buffer.as_str(), expected);
}
#[test]
fn test_decimal_eq_negative_zeros() {
// Decimal zeros of any sign/exponent are mathematically equal.
assert_eq!(Decimal::negative_zero(), Decimal::negative_zero());
assert_eq!(
Decimal::negative_zero_with_exponent(2),
Decimal::negative_zero_with_exponent(7)
);
assert_eq!(
Decimal::new(0, 0),
Decimal::new(Coefficient::new(Sign::Negative, 0), 0)
);
}
#[test]
fn test_decimal_ion_eq_negative_zeros() {
// To be IonEq, decimal zeros must have the same sign and exponent.
assert!(Decimal::negative_zero().ion_eq(&Decimal::negative_zero()));
assert!(!Decimal::negative_zero_with_exponent(2)
.ion_eq(&Decimal::negative_zero_with_exponent(7)));
assert!(!Decimal::new(0, 0).ion_eq(&Decimal::new(Coefficient::new(Sign::Negative, 0), 0)));
}
#[rstest]
// Each tuple is a coefficient/exponent pair that will be used to construct a Decimal.
// The boolean indicates whether the two Decimals are expected to be equal.
#[case((80, 2), (80, 2), true)]
#[case((124, -2), (1240, -3), true)]
#[case((0, 0), (0, 0), true)]
#[case((0, -2), (0, 3), true)]
#[case((0, 2), (0, 5), true)]
fn test_decimal_eq<I: Into<Coefficient>>(
#[case] components1: (I, i64),
#[case] components2: (I, i64),
#[case] is_equal: bool,
) {
let decimal1 = Decimal::new(components1.0.into(), components1.1);
let decimal2 = Decimal::new(components2.0.into(), components2.1);
assert_eq!(decimal1 == decimal2, is_equal);
}
#[rstest]
// Each tuple is a coefficient/exponent pair that will be used to construct a Decimal.
// The boolean indicates whether the two Decimals are expected to be Ion-equal.
#[case((80, 2), (80, 2), true)]
#[case((124, -2), (124, -2), true)]
#[case((-124, -2), (-124, -2), true)]
#[case((124, -2), (1240, -3), false)]
#[case((0, 0), (0, 0), true)]
#[case((0, -2), (0, -3), false)]
#[case((0, -2), (0, 3), false)]
#[case((0, -2), (0, -2), true)]
#[case((0, 2), (0, 5), false)]
fn test_decimal_ion_eq<I: Into<Coefficient>>(
#[case] components1: (I, i64),
#[case] components2: (I, i64),
#[case] ion_eq_expected: bool,
) {
let decimal1 = Decimal::new(components1.0.into(), components1.1);
let decimal2 = Decimal::new(components2.0.into(), components2.1);
assert_eq!(decimal1.ion_eq(&decimal2), ion_eq_expected);
}
#[rstest]
// Each tuple is a coefficient/exponent pair that will be used to construct a Decimal
#[case((80, 3), Ordering::Equal, (80, 3))]
#[case((80, 3), Ordering::Greater, (-80, 3))]
#[case((80, 3), Ordering::Greater, (8, 3))]
#[case((80, 4), Ordering::Greater, (8, 3))]
#[case((-80, 4), Ordering::Equal, (-80, 4))]
#[case((-80, 4), Ordering::Less, (-8, 3))]
#[case((-80, 4), Ordering::Equal, (-8, 5))]
#[case((-1000, -1), Ordering::Less, (-99_999_999_999i64, -9))]
#[case((1000, -1), Ordering::Greater, (99_999_999_999i64, -9))]
fn test_decimal_ord<I: Into<Coefficient>>(
#[case] components1: (I, i64),
#[case] ordering: Ordering,
#[case] components2: (I, i64),
) {
let decimal1 = Decimal::new(components1.0.into(), components1.1);
let decimal2 = Decimal::new(components2.0.into(), components2.1);
assert_eq!(decimal1.cmp(&decimal2), ordering);
// Make sure the inverse relationship holds
assert_eq!(decimal2.cmp(&decimal1), ordering.reverse());
}
#[rstest]
#[case(0f64, Decimal::new(0, 0))]
#[case(f64::neg_zero(), Decimal::negative_zero())]
#[case(1f64, Decimal::new(1, 0))]
#[case(-1f64, Decimal::new(-1, 0))]
#[case(10f64, Decimal::new(1, 1))]
#[case(100f64, Decimal::new(1, 2))]
#[case(1.5f64, Decimal::new(15, -1))]
#[case(-1.5f64, Decimal::new(-15, -1))]
#[case(3.141592659f64, Decimal::new(3141592659i64, -9))]
#[case(-3.141592659f64, Decimal::new(-3141592659i64, -9))]
fn test_decimal_try_from_f64_ok(#[case] value: f64, #[case] expected: Decimal) {
let actual: Decimal = value.try_into().unwrap();
assert_eq!(actual, expected);
}
#[test]
fn test_difference_by_parts_lossy() {
let d1: Decimal = Decimal::new(123456789, -2);
let (int_part, frac_part) = d1.into_parts_lossy();
assert_eq!(int_part, num_bigint::BigInt::from(1234567u64));
assert_eq!(frac_part, 0.89);
let d1: Decimal = Decimal::new(123456789, -2);
let d10: Decimal = Decimal::new(123456789, -1);
let d100: Decimal = Decimal::new(123456789, 0);
// diff d1 with d1
let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(&d1, &d1);
// 1234567 - 1234567 -> 0
assert_eq!(diff_integer, 0.into());
// 89 - 89 -> 0
assert_eq!(diff_fractional, 0.0);
// diff d10 with d1
let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(&d10, &d1);
// 12345678 - 1234567 -> 11111111
assert_eq!(diff_integer, 11111111.into());
// .9 - .89 -> .01
let expected = 0.01;
// ideally, this would be based on ULPs, not epsilon
// Cf. https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
let relative_error = ((diff_fractional - expected) / expected).abs();
assert!(relative_error <= 10.0 * f64::EPSILON);
// diff d100 with d1
let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(&d100, &d1);
// 123456789 - 1234567 -> 122222222
assert_eq!(diff_integer, 122222222.into());
// .0 - .89 -> -.89
let expected = -0.89;
// ideally, this would be based on ULPs, not epsilon
// Cf. https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
let relative_error = ((diff_fractional - expected) / expected).abs();
assert!(relative_error <= 10.0 * f64::EPSILON);
// diff 1.000_000_2 with 1.2
let (diff_integer, diff_fractional) = Decimal::difference_by_parts_lossy(
&Decimal::new(10_000_002, -7),
&Decimal::new(12, -1),
);
// 1 - 1 -> 0
assert_eq!(diff_integer, 0.into());
// 0.0000002 - 0.2 -> -0.1999998
let expected = -0.1999998;
// ideally, this would be based on ULPs, not epsilon
// Cf. https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
let relative_error = ((diff_fractional - expected) / expected).abs();
assert!(relative_error <= 10.0 * f64::EPSILON);
}
#[test]
fn test_decimal_try_from_large_f64_ok() {
let actual: Decimal = 1234567.89f64.try_into().unwrap();
let expected = Decimal::new(123456789, -2);
let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
assert_eq!(diff_int, 0.into(), "integer component expected equal");
assert!(diff_fract < 100_000.into()); // 100,000 arbitrarily chosen as 1/3 of the 15 decimal digits of precision
// MAX f64 - e.g., 1.7976931348623157e+308_f64
let actual: Decimal = f64::MAX.try_into().unwrap();
let expected = Decimal::new(0, 0);
let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
assert_eq!(
UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
309,
"f64::MAX should have 309 decimal digits"
);
assert_eq!(diff_fract, 0.into());
// MIN f64 - e.g., -1.7976931348623157e+308_f64
let actual: Decimal = f64::MIN.try_into().unwrap();
let expected = Decimal::new(0, 0);
let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
assert_eq!(
UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
309,
"f64::MIN should have 309 decimal digits"
);
assert_eq!(diff_fract, 0.into());
}
#[test]
fn test_decimal_try_from_very_small_f64_ok() {
let actual: Decimal = 0.000_000_000_000_000_1.try_into().unwrap();
let expected = Decimal::new(1, -16);
let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
assert_eq!(
UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
1
);
assert_eq!(diff_fract, 0.into());
// MIN_POSITIVE f64 - e.g., 2.2250738585072014e-308_f64
let actual: Decimal = f64::MIN_POSITIVE.try_into().unwrap();
let expected = Decimal::new(2, -308);
let (diff_int, diff_fract) = Decimal::difference_by_parts_lossy(&actual, &expected);
assert_eq!(
UInt::from(diff_int.magnitude().clone()).number_of_decimal_digits(),
1
);
assert_eq!(diff_fract, 0.into());
}
#[rstest]
#[case::positive_infinity(f64::infinity())]
#[case::negative_infinity(f64::neg_infinity())]
#[case::nan(f64::nan())]
fn test_decimal_try_from_f64_err(#[case] value: f64) {
let conversion_result: IonResult<Decimal> = value.try_into();
assert!(conversion_result.is_err());
}
#[test]
fn test_convert_to_big_decimal() {
let decimal = Decimal::new(-24601, -3);
let big_decimal: BigDecimal = decimal.try_into().unwrap();
let double = big_decimal.to_f64().unwrap();
assert_eq!(-24.601, double);
// Any form of negative zero will fail to be converted.
let decimal = Decimal::negative_zero();
let conversion_result: IonResult<BigDecimal> = decimal.try_into();
assert!(conversion_result.is_err());
let decimal = Decimal::negative_zero_with_exponent(6);
let conversion_result: IonResult<BigDecimal> = decimal.try_into();
assert!(conversion_result.is_err());
let decimal = Decimal::negative_zero_with_exponent(-6);
let conversion_result: IonResult<BigDecimal> = decimal.try_into();
assert!(conversion_result.is_err());
}
#[test]
fn test_convert_from_big_decimal() {
let big_decimal: BigDecimal = BigDecimal::new((-24601).into(), 3);
let actual: Decimal = big_decimal.into();
let expected = Decimal::new(-24601, -3);
assert_eq!(actual, expected);
}
#[rstest]
#[case(Decimal::new(-24601, -3), 3)]
#[case(Decimal::new(u64::MAX, -5), 5)]
#[case(Decimal::new(u64::MAX, 0), 0)]
#[case(Decimal::new(4, 3), -3)]
fn test_scale(#[case] value: Decimal, #[case] expected: i64) {
assert_eq!(value.scale(), expected)
}
#[rstest]
#[case(Decimal::new(-24601, -3), 5)]
#[case(Decimal::new(5, -3), 1)]
#[case(Decimal::new(24, -5), 2)]
#[case(Decimal::new(0, 0), 1)]
#[case(Decimal::new(234, 0), 3)]
#[case(Decimal::new(-234, 2), 5)]
#[case(Decimal::new(BigUint::from(u64::MAX), 3), 23)]
#[case(Decimal::new(BigUint::from(u128::MAX), -2), 39)]
fn test_precision(#[case] value: Decimal, #[case] expected: u64) {
assert_eq!(value.precision(), expected);
}
}