1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
use crate::ion_data::{IonEq, IonOrd};
use crate::result::{
    encoding_error, illegal_operation, illegal_operation_raw, IonError, IonResult,
};
use crate::types::Sign::Negative;
use crate::types::{Decimal, UInt};
use chrono::{
    DateTime, Datelike, FixedOffset, LocalResult, NaiveDate, NaiveDateTime, TimeZone, Timelike,
};
use num_bigint::BigUint;
use num_traits::ToPrimitive;
use std::cmp::Ordering;
use std::convert::TryInto;
use std::fmt::{Debug, Display, Formatter};
use std::ops::Div;

/// Indicates the most precise time unit that has been specified in the accompanying [Timestamp].
#[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Default)]
pub enum Precision {
    /// Year-level precision (e.g. `2020T`)
    #[default]
    Year,
    /// Month-level precision (e.g. `2020-08T`)
    Month,
    /// Day-level precision (e.g. `2020-08-01T`)
    Day,
    /// Minute-level precision (e.g. `2020-08-01T12:34Z`)
    HourAndMinute,
    /// Second-level precision or greater. (e.g. `2020-08-01T12:34:56Z` or `2020-08-01T12:34:56.123456789Z`)
    Second,
}

// [Default] cannot be derived for enum types. Providing a manual implementation of this type
// allows us to derive Default for [Timestamp].

/// Stores the precision of a Timestamp's fractional seconds, if present. This type is not
/// self-contained; if the Timestamp has a precision that is less than or equal to nanoseconds
/// (i.e. fewer than 10 digits), the fractional seconds value will be stored in the Timestamp's
/// NaiveDateTime component and the Mantissa will indicate the number of digits from that value
/// that should be used. If the precision is 10 or more digits, the Mantissa will store the value
/// itself as a Decimal with the correct precision.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Mantissa {
    /// The number of digits of precision in the Timestamp's fractional seconds. For example, a
    /// value of `3` would indicate millisecond precision. A value of `6` would indicate
    /// microsecond precision. All precisions less than or equal to nanoseconds should use
    /// this representation when possible.
    Digits(u32),
    /// Specifies the fractional seconds precisely as a `Decimal` in the range `>= 0` and `< 1`.
    /// The Decimal will have the correct precision; the complete value can and should be used.
    /// This representation should only be used for precisions greater than nanoseconds as can
    /// require allocations.
    Arbitrary(Decimal),
}

impl Mantissa {
    fn decimals_equal(d1: &Decimal, d2: &Decimal) -> bool {
        // See the [EmptyMantissa] trait for details about `is_empty()`
        (d1.is_empty() && d2.is_empty())
            // Exact equality test
            || d1.eq(d2)
            // Coefficient zeros' signs don't have to match for fractional seconds.
            || (d1.coefficient.is_zero() && d2.coefficient.is_zero() && d1.exponent == d2.exponent)
    }

    fn decimals_compare(d1: &Decimal, d2: &Decimal) -> Ordering {
        // See the [EmptyMantissa] trait for details about `is_empty()`
        if d1.is_empty() && d2.is_empty() {
            Ordering::Equal
        } else if d1.coefficient.is_zero() && d2.coefficient.is_zero() {
            // Coefficient zeros' signs don't have to be compared for fractional seconds.
            d1.exponent.cmp(&d2.exponent)
        } else {
            // Exact comparison test
            d1.cmp(d2)
        }
    }
}

trait EmptyMantissa {
    /// Returns true if the Mantissa's value is equivalent to not having specified a
    /// sub-second precision at all. For example, `Mantissa::Digits(0)` or
    /// `Mantissa::Arbitrary(Decimal::new(0, 0))`.
    fn is_empty(&self) -> bool;

    /// Returns true if the Mantissa's value is equivalent to a zero value
    /// For example, `Mantissa::Digits(0)` or `Mantissa::Arbitrary(Decimal::new(0, x))`.
    /// For Decimal, it ignores the exponent value for a zero coefficient.
    fn is_zero(&self) -> bool;
}

impl EmptyMantissa for Decimal {
    fn is_empty(&self) -> bool {
        self.coefficient.is_zero() && self.exponent == 0
    }

    fn is_zero(&self) -> bool {
        // if the coefficient is zero then ignore the exponent value
        self.coefficient.is_zero()
    }
}

impl EmptyMantissa for Mantissa {
    fn is_empty(&self) -> bool {
        match self {
            // Look at zero digits of the DateTime's nanoseconds
            Mantissa::Digits(0) => true,
            // Or a Decimal with a coefficient of zero (any sign) and an exponent of zero.
            Mantissa::Arbitrary(d) => d.is_empty(),
            _ => false,
        }
    }

    fn is_zero(&self) -> bool {
        match self {
            // Look at zero digits of the DateTime's nanoseconds
            Mantissa::Digits(0) => true,
            // Or a Decimal with a coefficient of zero (any sign).
            Mantissa::Arbitrary(d) => d.is_zero(),
            _ => false,
        }
    }
}

/// Returns the first `num_digits` digits of the specified `value`.
// This is used in Timestamp's implementation of [PartialEq].
fn first_n_digits_of(num_digits: u32, value: u32) -> u32 {
    let total_digits = super::num_decimal_digits_in_u64(value as u64) as u32;
    if total_digits <= num_digits {
        return value;
    }
    // Truncate the trailing digits
    value / 10u32.pow(total_digits - num_digits)
}

/// Constructs a [FixedOffset] at the specified offset seconds from UTC. If the specified offset
/// is out of bounds, this method will panic.
fn offset_east(seconds_east: i32) -> FixedOffset {
    FixedOffset::east_opt(seconds_east)
        // This error case is expected to be handled before this method is called.
        .expect("seconds_east was outside the supported range")
}

/// Constructs a [`DateTime<FixedOffset>`] at the specified offset using the fields of
/// [`NaiveDateTime`] representing the desired UTC datetime.
fn datetime_at_offset(utc_datetime: &NaiveDateTime, seconds_east: i32) -> DateTime<FixedOffset> {
    offset_east(seconds_east).from_utc_datetime(utc_datetime)
}

/// Represents a point in time to a specified degree of precision. Unlike `chrono`'s [NaiveDateTime]
/// and [DateTime], a `Timestamp` has variable precision ranging from a year to fractional seconds
/// of an arbitrary unit.
#[derive(Debug, Clone)]
pub struct Timestamp {
    pub(crate) date_time: NaiveDateTime,
    pub(crate) offset: Option<FixedOffset>,
    pub(crate) precision: Precision,
    pub(crate) fractional_seconds: Option<Mantissa>,
}

impl Timestamp {
    /// Converts a [`NaiveDateTime`] or [`DateTime<FixedOffset>`] to a Timestamp with the specified
    /// precision. If the precision is [`Precision::Second`], nanosecond precision (the maximum
    /// supported by a [`Timelike`]) is assumed.
    pub fn from_datetime<D>(datetime: D, precision: Precision) -> Timestamp
    where
        D: Datelike + Timelike + Into<Timestamp>,
    {
        let mut timestamp: Timestamp = datetime.into();
        if precision < Precision::Second {
            timestamp.fractional_seconds = None;
        }
        timestamp.precision = precision;
        timestamp
    }

    /// If the precision is [Precision::Second], returns the Decimal scale of this Timestamp's
    /// fractional seconds; otherwise, returns None.
    ///
    /// For example, a Timestamp with 553 milliseconds would return a Decimal scale of 3.
    pub fn fractional_seconds_scale(&self) -> Option<i64> {
        // This function is used when comparing two Timestamps with different Mantissa representations.
        use Mantissa::*;
        match self.fractional_seconds.as_ref() {
            // number_of_digits represent number of digits of precision in the Timestamp's fractional seconds.
            // this is equivalent to the decimal scale when we convert the fractional seconds into a decimal
            // and return its scale
            Some(Digits(number_of_digits)) => Some(*number_of_digits as i64),
            // This timestamp already stores its fractional seconds as a Decimal; return the scale of this Decimal.
            Some(Arbitrary(decimal)) => Some(decimal.scale()),
            // This Timestamp's precision is too low to have a fractional seconds field.
            None => None,
        }
    }

    /// If the precision is [Precision::Second], returns a Decimal representation of this Timestamp's
    /// fractional seconds; otherwise, returns None.
    ///
    /// For example, a Timestamp with 553 milliseconds would return a Decimal with
    /// coefficient 553, exponent -3.
    pub(crate) fn fractional_seconds_as_decimal(&self) -> Option<Decimal> {
        // This function is used when comparing two Timestamps with different Mantissa representations.
        use Mantissa::*;
        match self.fractional_seconds.as_ref() {
            // This timestamp stores its fractional seconds in its `date_time` field.
            // We'll need to convert the date_time's nanoseconds to a Decimal and return it.
            Some(Digits(number_of_digits)) => {
                const MAX_NANOSECOND_DIGITS: u32 = 9; // If it were 10, it'd be > a second
                let nanoseconds = self.date_time.nanosecond();
                let leading_zeros = MAX_NANOSECOND_DIGITS
                    - super::num_decimal_digits_in_u64(nanoseconds as u64) as u32;
                let coefficient = if leading_zeros >= *number_of_digits {
                    0
                } else {
                    first_n_digits_of(*number_of_digits - leading_zeros, nanoseconds)
                };
                let exponent = -i64::from(*number_of_digits);
                Some(Decimal::new(coefficient, exponent))
            }
            // This timestamp already stores its fractional seconds as a Decimal; return a clone.
            Some(Arbitrary(decimal)) => Some(decimal.clone()),
            // This Timestamp's precision is too low to have a fractional seconds field.
            None => None,
        }
    }

    /// If the precision is [Precision::Second], returns a u32 representing
    /// this Timestamp's fractional seconds in nanoseconds; otherwise, returns None.
    ///
    /// NOTE: This is a potentially lossy operation. A Timestamp with picoseconds would return a
    /// number of nanoseconds, losing precision. Similarly, a Timestamp with milliseconds would
    /// also return a number of nanoseconds, erroneously gaining precision.
    fn fractional_seconds_as_nanoseconds(&self) -> Option<u32> {
        // This function is used when converting a Timestamp to a DateTime<FixedOffset> or
        // NaiveDateTime.
        use Mantissa::*;
        match self.fractional_seconds.as_ref() {
            // This timestamp already stores its fractional seconds in its `date_time` field.
            // We can ignore the `number_of_digits` (which tracks its precision) and simply return
            // `self.date_time`'s nanoseconds.
            Some(Digits(_number_of_digits)) => Some(self.date_time.nanosecond()),
            // This timestamp stores its fractional seconds as a Decimal. Down-convert it to a u32.
            Some(Arbitrary(decimal)) => {
                const NANOSECONDS_EXPONENT: i64 = -9;
                let exponent_delta = decimal.exponent - NANOSECONDS_EXPONENT;
                let magnitude = match decimal.coefficient.magnitude() {
                    UInt::U64(magnitude) => *magnitude,
                    UInt::BigUInt(magnitude) => {
                        // If the magnitude is small enough to fit in a u64, do the conversion.
                        if let Ok(small_magnitude) = u64::try_from(magnitude) {
                            small_magnitude
                        } else {
                            // Otherwise, the magnitude is definitely bigger than 999,999,999
                            // (the max number of nanoseconds). We'll need to scale it down to
                            // nanoseconds, losing precision in the process.
                            let nanoseconds = magnitude
                                .div(BigUint::from(10f64.powi(exponent_delta.abs() as i32) as u64))
                                .to_u32()
                                .expect("failed to convert BigUint magnitude to u32");
                            return Some(nanoseconds);
                        }
                    }
                };
                let nanoseconds = (magnitude as f64 * 10f64.powi(exponent_delta as i32)) as u32;
                Some(nanoseconds)
            }
            // This Timestamp's precision is too low to have a fractional seconds field.
            None => None,
        }
    }

    /// Tests the fractional seconds fields of two timestamps for ordering. This function will
    /// only be called if both Timestamps have a precision of [Precision::Second].
    fn fractional_seconds_compare(&self, other: &Timestamp) -> Ordering {
        use Mantissa::*;
        match (
            self.fractional_seconds.as_ref(),
            other.fractional_seconds.as_ref(),
        ) {
            (None, None) => Ordering::Equal,
            (Some(_m), None) => {
                let d1 = self.fractional_seconds_as_decimal().unwrap();
                let d2 = Decimal::new(0u64, 0);
                d1.cmp(&d2)
            }
            (None, Some(_m)) => {
                let d1 = Decimal::new(0u64, 0);
                let d2 = other.fractional_seconds_as_decimal().unwrap();
                d1.cmp(&d2)
            }
            (Some(Digits(_d1)), Some(Digits(_d2))) => {
                let d1 = self.date_time.nanosecond();
                let d2 = other.date_time.nanosecond();
                d1.cmp(&d2)
            }
            (Some(Arbitrary(d1)), Some(Arbitrary(d2))) => Mantissa::decimals_compare(d1, d2),
            (Some(Digits(_d1)), Some(Arbitrary(d2))) => {
                let d1 = &self.fractional_seconds_as_decimal().unwrap();
                Mantissa::decimals_compare(d1, d2)
            }
            (Some(Arbitrary(d1)), Some(Digits(_d2))) => {
                let d2 = &other.fractional_seconds_as_decimal().unwrap();
                Mantissa::decimals_compare(d1, d2)
            }
        }
    }

    /// Tests the fractional seconds fields of two timestamps for equality. This function will
    /// only be called if both Timestamps have a precision of [Precision::Second].
    fn fractional_seconds_equal(&self, other: &Timestamp) -> bool {
        use Mantissa::*;

        // TODO: make Timestamp::fractional_seconds to be Mantissa when creating a Timestamp to get rid of below conversion
        // convert Option<&Mantissa> to &Mantissa
        let m1 = match &self.fractional_seconds {
            None => &Mantissa::Digits(0),
            Some(m) => m,
        };

        let m2 = match &other.fractional_seconds {
            None => &Mantissa::Digits(0),
            Some(m) => m,
        };

        // compare fractional seconds
        match (m1, m2) {
            (Digits(d1), Digits(d2)) => {
                if d1 != d2 {
                    // Different precisions
                    return false;
                }
                let d1 = first_n_digits_of(*d1, self.date_time.nanosecond());
                let d2 = first_n_digits_of(*d2, other.date_time.nanosecond());
                d1 == d2
            }
            (Arbitrary(d1), Arbitrary(d2)) => Mantissa::decimals_equal(d1, d2),
            (Digits(_d1), Arbitrary(d2)) => {
                let d1 = match self.fractional_seconds_as_decimal() {
                    Some(decimal_value) => decimal_value,
                    None => Decimal::new(0, 0),
                };
                Mantissa::decimals_equal(&d1, d2)
            }
            (Arbitrary(d1), Digits(_d2)) => {
                let d2 = match other.fractional_seconds_as_decimal() {
                    Some(decimal_value) => decimal_value,
                    None => Decimal::new(0, 0),
                };
                Mantissa::decimals_equal(d1, &d2)
            }
        }
    }

    /// Writes the fractional seconds portion of a text timestamp, including a leading `.`.
    fn format_fractional_seconds<W: std::fmt::Write>(&self, output: &mut W) -> IonResult<()> {
        if self.fractional_seconds.is_none() {
            // Nothing to do.
            return Ok(());
        }
        let mantissa = self.fractional_seconds.as_ref().unwrap();
        if mantissa.is_empty() {
            // No need to write anything.
            return Ok(());
        }
        match mantissa {
            Mantissa::Digits(num_digits) => {
                // Scale the nanoseconds down to the requested number of digits.
                // Example: if `num_digits` is 3 (that is: millisecond precision), we need to
                // divide the nanoseconds by 10^(9-3) to get the correct precision:
                //      123,000,000 nanoseconds / 10^(9-3) = 123 milliseconds
                let scaled = self.date_time.nanosecond() / 10u32.pow(9 - *num_digits);
                // If our scaled number has fewer digits than the precision states, add leading
                // zeros to the output to make up the difference.
                // Example: `num_digits` is 6 (microsecond precision) but our number of microseconds
                // is `9500` (only 4 digits), we need to add two leading zeros to make: `009500`.
                let actual_num_digits = super::num_decimal_digits_in_u64(scaled as u64);
                let num_leading_zeros = (*num_digits as u64) - actual_num_digits;
                write!(output, ".")?;
                for _ in 0..num_leading_zeros {
                    write!(output, "0")?;
                }
                write!(output, "{scaled}")?;
                Ok(())
            }
            Mantissa::Arbitrary(decimal) => {
                let exponent = decimal.exponent;
                let coefficient = &decimal.coefficient;
                if exponent >= 0 {
                    // We know that the coefficient is non-zero (the mantissa was not empty),
                    // so having a positive exponent would result in an illegal fractional
                    // seconds value.
                    return encoding_error("found fractional seconds decimal that was >= 1.");
                }

                let num_digits = decimal.coefficient.number_of_decimal_digits();
                let abs_exponent = decimal.exponent.unsigned_abs();
                // At this point, we know that the abs_exponent is greater than num_digits because
                // the decimal has to be < 1.
                let num_leading_zeros = abs_exponent - num_digits;
                write!(output, ".")?;
                for _ in 0..num_leading_zeros {
                    write!(output, "0")?;
                }
                if coefficient.is_negative_zero() {
                    write!(output, "0")?;
                } else if coefficient.sign == Negative {
                    return encoding_error(
                        "fractional seconds cannot have a negative coefficient (other than -0)",
                    );
                } else {
                    write!(output, "{}", decimal.coefficient)?;
                }
                Ok(())
            }
        }
    }

    pub(crate) fn format<W: std::fmt::Write>(&self, output: &mut W) -> IonResult<()> {
        let (offset_minutes, datetime) = if let Some(minutes) = self.offset {
            // Create a datetime with the appropriate offset that we can use for formatting.
            let datetime: DateTime<FixedOffset> = self.clone().try_into()?;
            // Convert the offset to minutes --v
            (Some(minutes.local_minus_utc() / 60), datetime)
        } else {
            // Our timestamp has an unknown offset. Per the spec, this means it makes no
            // assertions about *where* it was recorded, but its fields are still in UTC.
            // Create a UTC datetime that we can use for formatting.
            let datetime: NaiveDateTime = self.clone().try_into()?;
            let datetime: DateTime<FixedOffset> = datetime_at_offset(&datetime, 0);
            (None, datetime)
        };

        write!(output, "{:0>4}", datetime.year())?;
        //                  ^-- 0-padded, right aligned, 4-digit year
        if self.precision == Precision::Year {
            write!(output, "T")?;
            return Ok(());
        }

        write!(output, "-{:0>2}", datetime.month())?;
        //                   ^-- delimiting hyphen and 0-padded, right aligned, 2-digit month
        if self.precision == Precision::Month {
            write!(output, "T")?;
            return Ok(());
        }

        write!(output, "-{:0>2}", datetime.day())?;
        //                   ^-- delimiting hyphen and 0-padded, right aligned, 2-digit day
        if self.precision == Precision::Day {
            write!(output, "T")?;
            return Ok(());
        }

        write!(
            output,
            "T{:0>2}:{:0>2}",
            // ^-- delimiting T, formatted hour, delimiting colon, formatted minute
            datetime.hour(),
            datetime.minute()
        )?;
        if self.precision == Precision::HourAndMinute {
            self.format_offset(offset_minutes, output)?;
            return Ok(());
        }

        write!(output, ":{:0>2}", datetime.second())?;
        //                   ^-- delimiting colon, formatted second
        self.format_fractional_seconds(output)?;
        self.format_offset(offset_minutes, output)?;
        Ok(())
    }

    fn format_offset<W: std::fmt::Write>(
        &self,
        offset_minutes: Option<i32>,
        output: &mut W,
    ) -> IonResult<()> {
        let (sign, hours, minutes) = match offset_minutes {
            None => ("-", 0, 0),
            Some(offset_minutes) => {
                const MINUTES_PER_HOUR: i32 = 60;
                // Split the offset into a sign and magnitude for formatting
                let sign = if offset_minutes >= 0 { "+" } else { "-" };
                let offset_minutes = offset_minutes.abs();
                let hours = offset_minutes / MINUTES_PER_HOUR;
                let minutes = offset_minutes % MINUTES_PER_HOUR;

                (sign, hours, minutes)
            }
        };
        write!(output, "{sign}{hours:0>2}:{minutes:0>2}")?;
        Ok(())
    }

    // ============================================================================
    // ====== The below methods are public entry points for the builder API. ======
    // ============================================================================
    //
    // These methods names are inspired by those of the chrono crate, the most
    // widely used datetime library in the Rust ecosystem.
    //
    // See [TimestampBuilder]'s documentation for more details.

    /// Creates a TimestampBuilder with the specified year and [Precision::Year].
    pub fn with_year(year: u32) -> MonthSetter {
        let builder: TimestampBuilder = TimestampBuilder {
            year: year as u16,
            ..Default::default()
        };
        MonthSetter { builder }
    }

    /// Creates a TimestampBuilder with the specified year, month, and day. Its precision is
    /// set to [Precision::Day].
    pub fn with_ymd(year: u32, month: u32, day: u32) -> HourAndMinuteSetter {
        let builder = Timestamp::with_year(year)
            .with_month(month)
            .with_day(day)
            .into_builder();
        HourAndMinuteSetter { builder }
    }

    /// Creates a TimestampBuilder with the specified year, month, day, hour, minute, and second.
    /// Its precision is set to [Precision::Second].
    pub fn with_ymd_hms(
        year: u32,
        month: u32,
        day: u32,
        hour: u32,
        minute: u32,
        second: u32,
    ) -> FractionalSecondSetter {
        let builder = Timestamp::with_ymd(year, month, day)
            .with_hms(hour, minute, second)
            .into_builder();
        FractionalSecondSetter { builder }
    }

    /// Creates a TimestampBuilder with the specified year, month, day, hour, minute, second and
    /// milliseconds. Its precision is set to [Precision::Second].
    pub fn with_ymd_hms_millis(
        year: u32,
        month: u32,
        day: u32,
        hour: u32,
        minute: u32,
        second: u32,
        milliseconds: u32,
    ) -> FractionalSecondSetter {
        let builder = Timestamp::with_ymd(year, month, day)
            .with_hms(hour, minute, second)
            .with_milliseconds(milliseconds)
            .into_builder();
        FractionalSecondSetter { builder }
    }

    /// Returns the offset in minutes that has been specified in the [Timestamp].
    /// A positive value indicates Eastern Hemisphere, while a negative value indicates Western Hemisphere.
    pub fn offset(&self) -> Option<i32> {
        self.offset.map(|offset| offset.local_minus_utc() / 60)
    }

    /// Returns the precision that has been specified in the [Timestamp].
    pub fn precision(&self) -> Precision {
        self.precision
    }

    /// Returns the year that has been specified in the [Timestamp].
    pub fn year(&self) -> i32 {
        // verify if the timestamp has an offset
        if let Some(offset) = self.offset {
            // `NaiveDateTime#hours()` returns hours normalized as per UTC
            // for local time we need to +/- the difference
            let local_date_time = DateTime::<FixedOffset>::from_utc(self.date_time, offset);
            return local_date_time.year();
        }
        self.date_time.year()
    }

    /// Returns the month that has been specified in the [Timestamp].
    /// Returns the month number starting from 1.
    /// The return value ranges from 1 to 12.
    pub fn month(&self) -> u32 {
        // verify if the timestamp has an offset
        if let Some(offset) = self.offset {
            // `NaiveDateTime#hours()` returns hours normalized as per UTC
            // for local time we need to +/- the difference
            let local_date_time = DateTime::<FixedOffset>::from_utc(self.date_time, offset);
            return local_date_time.month();
        }
        self.date_time.month()
    }

    /// Returns the day that has been specified in the [Timestamp].
    /// Returns the day of month starting from 1.
    // The return value ranges from 1 to 31. (The last day of month differs by months.)
    pub fn day(&self) -> u32 {
        // verify if the timestamp has an offset
        if let Some(offset) = self.offset {
            // `NaiveDateTime#hours()` returns hours normalized as per UTC
            // for local time we need to +/- the difference
            let local_date_time = DateTime::<FixedOffset>::from_utc(self.date_time, offset);
            return local_date_time.day();
        }
        self.date_time.day()
    }

    /// Returns the hour(s) that has been specified in the [Timestamp].
    /// Returns the hour number from 0 to 23.
    pub fn hour(&self) -> u32 {
        // verify if the timestamp has an offset
        if let Some(offset) = self.offset {
            // `NaiveDateTime#hours()` returns hours normalized as per UTC
            // for local time we need to +/- the difference
            let local_date_time = DateTime::<FixedOffset>::from_utc(self.date_time, offset);
            return local_date_time.hour();
        }
        self.date_time.hour()
    }

    /// Returns the minute(s) that has been specified in the [Timestamp].
    /// Returns the minute number from 0 to 59.
    pub fn minute(&self) -> u32 {
        // verify if the timestamp has an offset
        if let Some(offset) = self.offset {
            // `NaiveDateTime#hours()` returns minutes normalized as per UTC
            // for local time we need to +/- the difference
            let local_date_time = DateTime::<FixedOffset>::from_utc(self.date_time, offset);
            return local_date_time.minute();
        }
        self.date_time.minute()
    }

    /// Returns the second(s) that has been specified in the [Timestamp].
    /// Returns the second number from 0 to 59.
    pub fn second(&self) -> u32 {
        self.date_time.second()
    }

    /// Return a UTC timestamp for this [Timestamp]
    pub fn to_utc(&self) -> Timestamp {
        self.date_time.into()
    }

    /// Returns this Timestamp's fractional seconds in nanoseconds
    ///
    /// NOTE: This is a potentially lossy operation. A Timestamp with picoseconds would return a
    /// number of nanoseconds, losing precision. If it loses precision then truncation is preformed.
    /// (e.g. a timestamp with fractional seconds of `0.000000000999` would be returned as `0`)
    pub fn nanoseconds(&self) -> u32 {
        self.fractional_seconds_as_nanoseconds().unwrap_or_default()
    }

    /// Returns this Timestamp's fractional seconds in milliseconds
    ///
    /// NOTE: This is a potentially lossy operation. A Timestamp with picoseconds would return a
    /// number of milliseconds, losing precision. If it loses precision then truncation is preformed.
    /// (e.g. a timestamp with fractional seconds of `0.000999` would be returned as `0`)
    pub fn milliseconds(&self) -> u32 {
        self.fractional_seconds_as_nanoseconds()
            .map(|s| s / 1000000)
            .unwrap_or_default()
    }
}

/// Formats an ISO-8601 timestamp of appropriate precision and offset.
impl Display for Timestamp {
    fn fmt(&self, output: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        self.format(output).map_err(|_| std::fmt::Error)?;
        Ok(())
    }
}

impl PartialOrd for Timestamp {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Timestamp {
    fn cmp(&self, other: &Self) -> Ordering {
        let self_datetime = self.date_time.with_nanosecond(0).unwrap();
        let other_datetime = other.date_time.with_nanosecond(0).unwrap();

        let self_datetime = self
            .offset
            .map(|offset| offset.from_utc_datetime(&self_datetime))
            .unwrap_or_else(|| datetime_at_offset(&self_datetime, 0));
        let other_datetime = other
            .offset
            .map(|offset| offset.from_utc_datetime(&other_datetime))
            .unwrap_or_else(|| datetime_at_offset(&other_datetime, 0));

        let date_time_comparison = self_datetime.cmp(&other_datetime);

        match date_time_comparison {
            // if the datetime comparison is Ordering::Equal,
            // then return fractional seconds comparison result
            Ordering::Equal => self.fractional_seconds_compare(other),
            // if datetime comparison is not equal,
            // then no need to check for fractional seconds comparison
            _ => date_time_comparison,
        }
    }
}

/// Two Timestamps are considered equal (though not necessarily IonEq) if they represent the same
/// instant in time. Precision is ignored. Offsets do not have to match as long as the instants
/// being represented match. Examples:
/// * `2022T` == `2022T-01`
/// * `2022T` == `2022T-01-01T00:00:00.000+00:00`
/// * `2022T-05-11T12:00:00.000Z` == `2022T-05-11T07:00:00.000-05:00`
impl PartialEq for Timestamp {
    fn eq(&self, other: &Self) -> bool {
        // First, compare the two Timestamps' fractional seconds. We do this first because
        // Timestamps with different Mantissa representations are a bit tricky to compare. Once
        // we've established that the fractional seconds match, we can compare all of the other
        // fields in the timestamp by comparing their respective `DateTime`s.
        if !self.fractional_seconds_equal(other) {
            return false;
        }

        // When a Timestamp is created, any fields beyond its precision are set to the lowest
        // legal value for that field. So the Timestamp `2022-05T` (which has `Month` precision)
        // would have a `day` field of `1` and hour, minute, and seconds fields of `0`. This makes
        // it easy to compare Timestamps with different precisions.

        // Make copies of their respective DateTime values but with the fractional seconds zeroed
        // out. We're not modifying `self` or `other`, and we've already compared their fractional
        // seconds so it's ok to ignore them from here on.
        let self_datetime = self.date_time.with_nanosecond(0).unwrap();
        let other_datetime = other.date_time.with_nanosecond(0).unwrap();

        // Apply each Timestamp's offset to the DateTime. If there's no offset, set it to UTC.
        let self_datetime = self
            .offset
            .map(|offset| offset.from_utc_datetime(&self_datetime))
            .unwrap_or_else(|| datetime_at_offset(&self_datetime, 0));
        let other_datetime = other
            .offset
            .map(|offset| offset.from_utc_datetime(&other_datetime))
            .unwrap_or_else(|| datetime_at_offset(&other_datetime, 0));

        // Compare the resulting `DateTime<FixedOffset>`s
        self_datetime == other_datetime
    }
}

impl Eq for Timestamp {}

impl IonEq for Timestamp {
    fn ion_eq(&self, other: &Self) -> bool {
        if self.precision != other.precision {
            return false;
        }
        // Timestamps are only considered Ion-equal if they have the same offset, including "unknown".
        if self.offset != other.offset {
            return false;
        }
        let self_dt = self.date_time;
        let other_dt = other.date_time;
        if self_dt.year() != other_dt.year() {
            return false;
        }
        if self.precision >= Precision::Month && self_dt.month() != other_dt.month() {
            return false;
        }
        if self.precision >= Precision::Day && self_dt.day() != other_dt.day() {
            return false;
        }
        if self.precision >= Precision::HourAndMinute
            && (self_dt.hour() != other_dt.hour() || self_dt.minute() != other_dt.minute())
        {
            return false;
        }
        if self.precision <= Precision::HourAndMinute {
            return true;
        }

        if self_dt.second() != other_dt.second() || !self.fractional_seconds_equal(other) {
            return false;
        }

        true
    }
}

impl IonOrd for Timestamp {
    fn ion_cmp(&self, other: &Self) -> Ordering {
        // Compare by point in time
        let ord = self.cmp(other);
        if ord != Ordering::Equal {
            return ord;
        };

        // And then by precision
        let ord = self.precision.cmp(&other.precision);
        if ord != Ordering::Equal {
            return ord;
        };
        match [
            self.fractional_seconds_scale(),
            other.fractional_seconds_scale(),
        ] {
            [None, Some(b)] if b > 0 => return Ordering::Less,
            [Some(a), None] if a > 0 => return Ordering::Greater,
            [Some(a), Some(b)] => {
                let ord = a.cmp(&b);
                if ord != Ordering::Equal {
                    return ord;
                }
            }
            _ => {}
        }

        // And finally by offset (unknown, then least to greatest)
        match [self.offset, other.offset] {
            [None, Some(_)] => Ordering::Less,
            [None, None] => Ordering::Equal,
            [Some(_), None] => Ordering::Greater,
            [Some(o1), Some(o2)] => o1.local_minus_utc().cmp(&o2.local_minus_utc()),
        }
    }
}

/// A Builder object for incrementally configuring and finally instantiating a [Timestamp].
/// For the time being, this type is not publicly visible. Users are expected to use any of the
/// [TimeUnitSetter] implementations that wrap it. These wrappers expose only those methods which
/// can result in a valid Timestamp. For example, it is not possible to set the `day` field
/// without first setting the `year` and `month` fields.
// See the unit tests for usage examples.
#[derive(Debug, Clone, Default)]
struct TimestampBuilder {
    fields_are_utc: bool,
    precision: Precision,
    offset: Option<i32>,
    year: u16,
    month: Option<u8>,
    day: Option<u8>,
    hour: Option<u8>,
    minute: Option<u8>,
    second: Option<u8>,
    fractional_seconds: Option<Mantissa>,
    nanoseconds: Option<u32>,
}

impl TimestampBuilder {
    /// Sets all of the fields on the given [`NaiveDateTime`] or [`DateTime<FixedOffset>`] using the
    /// values from the TimestampBuilder. Only those fields required by the TimestampBuilder's
    /// configured [`Precision`] will be set.
    fn configure_datetime<D>(&mut self, mut datetime: D) -> IonResult<D>
    where
        D: Datelike + Timelike + Debug,
    {
        if self.year == 0 || self.year > 9999 {
            return illegal_operation(format!(
                "Timestamp year '{}' out of range (1-9999)",
                self.year
            ));
        }
        datetime = datetime.with_year(self.year as i32).ok_or_else(|| {
            illegal_operation_raw(format!("specified year ('{}') is invalid", self.year))
        })?;
        if self.precision == Precision::Year {
            return Ok(datetime);
        }

        // If precision >= Month, the month must be set.
        let month = self.month.expect("missing month");
        datetime = datetime.with_month(month as u32).ok_or_else(|| {
            illegal_operation_raw(format!("specified month ('{month}') is invalid"))
        })?;
        if self.precision == Precision::Month {
            return Ok(datetime);
        }

        // If precision >= Day, the day must be set.
        let day = self.day.expect("missing day");
        datetime = datetime
            .with_day(day as u32)
            .ok_or_else(|| illegal_operation_raw(format!("specified day ('{day}') is invalid")))?;
        if self.precision == Precision::Day {
            return Ok(datetime);
        }

        // If precision >= HourAndMinute, the hour and minute must be set.
        let hour = self.hour.expect("missing hour");
        datetime = datetime.with_hour(hour as u32).ok_or_else(|| {
            illegal_operation_raw(format!("specified hour ('{hour}') is invalid"))
        })?;
        let minute = self.minute.expect("missing minute");
        datetime = datetime.with_minute(minute as u32).ok_or_else(|| {
            illegal_operation_raw(format!("specified minute ('{minute}') is invalid"))
        })?;
        if self.precision == Precision::HourAndMinute {
            return Ok(datetime);
        }

        // If precision >= Second, the second must be set...
        let second = self.second.expect("missing second");
        datetime = datetime.with_second(second as u32).ok_or_else(|| {
            illegal_operation_raw(format!("provided second ('{second}') is invalid."))
        })?;

        // ...along with the fractional seconds.
        // If fractional seconds is Digit, self.nanoseconds will be Some(_).
        // If it's Arbitrary, self.nanoseconds will be None and we should set the nanoseconds
        // field to 0. The real value will be stored in the Timestamp alongside the DateTime
        // as a Decimal.
        datetime = datetime
            .with_nanosecond(self.nanoseconds.unwrap_or(0))
            .ok_or_else(|| {
                illegal_operation_raw(format!("provided nanosecond ('{second}') is invalid"))
            })?;

        Ok(datetime)
    }

    // A [NaiveDateTime] has no offset. This function attempts to apply the provided offset to the
    // NaiveDateTime, producing a DateTime<FixedOffset>. If the offset is invalid or the combination
    // of offset and datetime would produce an invalid Timestamp, this function will return Err.
    fn apply_offset(
        offset_minutes: i32,
        fields_are_utc: bool,
        datetime: NaiveDateTime,
    ) -> IonResult<DateTime<FixedOffset>> {
        // The chrono APIs express their DateTime offsets in seconds, but the Ion APIs use minutes.
        const SECONDS_PER_MINUTE: i32 = 60;
        let offset_seconds = offset_minutes * SECONDS_PER_MINUTE;
        let offset = FixedOffset::east_opt(offset_seconds).ok_or_else(|| {
            illegal_operation_raw(format!(
                "specified offset ({offset_minutes} minutes) is invalid"
            ))
        })?;

        // If the fields of the datetime are UTC, constructing a DateTime<FixedOffset> is guaranteed
        // to succeed. Return it directly.
        if fields_are_utc {
            return Ok(offset.from_utc_datetime(&datetime));
        }

        // Otherwise, apply the offset to our (local) NaiveDateTime and make sure the resulting
        // DateTime<FixedOffset> is valid.
        match offset.from_local_datetime(&datetime) {
            LocalResult::None => {
                illegal_operation(
                    format!(
                        "specified offset/datetime pair is invalid (offset={offset_minutes}, datetime={datetime})"
                    )
                )
            },
            LocalResult::Single(datetime) => Ok(datetime),
            LocalResult::Ambiguous(_min, _max) => {
                illegal_operation(
                    format!(
                        "specified offset/datetime pair produces an ambiguous timestamp (offset={offset_minutes}, datetime={datetime})"
                    )
                )
            }
        }
    }

    /// Attempt to construct a [Timestamp] using the values configured on the [TimestampBuilder].
    /// If any of the individual fields are invalid (for example, a `month` value that is greater
    /// than `12`) or if the resulting timestamp would represent a non-existent point in time
    /// (like those bypassed by daylight saving time), this method will return an `Err(IonError)`.
    fn build(mut self) -> IonResult<Timestamp> {
        // Start with a clean slate NaiveDateTime that we can configure. (These are cheap to copy.)
        let mut datetime: NaiveDateTime = NaiveDate::from_ymd_opt(0, 1, 1)
            .unwrap()
            .and_hms_nano_opt(0, 0, 0, 0)
            .unwrap();
        // Set all of the time fields on the datetime using the data from our TimestampBuilder
        datetime = self.configure_datetime(datetime)?;
        // If the timestamp we're building has a known offset...
        let mut timestamp: Timestamp = if let Some(offset_minutes) = self.offset {
            // ...apply the offset to our NaiveDateTime, producing a DateTime<FixedOffset>
            let datetime_with_offset: DateTime<FixedOffset> =
                Self::apply_offset(offset_minutes, self.fields_are_utc, datetime)?;
            // ...and convert the DateTime<FixedOffset> into a full Timestamp.
            Timestamp::from_datetime(datetime_with_offset, self.precision)
        } else {
            // Otherwise, there's not a known offset. We can directly convert our NaiveDateTime
            // into a full Timestamp.
            Timestamp::from_datetime(datetime, self.precision)
        };

        // Copy the fractional seconds from the builder to the Timestamp.
        if self.precision == Precision::Second {
            timestamp.fractional_seconds = self.fractional_seconds;
            if let Some(Mantissa::Arbitrary(ref decimal)) = &timestamp.fractional_seconds {
                if decimal.is_less_than_zero() {
                    return illegal_operation(
                        "cannot create a timestamp with negative fractional seconds",
                    );
                }
                if decimal.is_greater_than_or_equal_to_one() {
                    return illegal_operation(
                        "cannot create a timestamp with a fractional seconds >= 1.0",
                    );
                }
                if decimal.is_zero() && decimal.exponent >= 0 {
                    timestamp.fractional_seconds = None;
                }
            }
        }
        Ok(timestamp)
    }
}

/// Allows the user to set the `month` field on a builder that has already had its `year`
/// field set. Or, if `Year` is the desired precision, they may build the [Timestamp] with an
/// unknown offset instead.
#[derive(Debug, Clone)]
pub struct MonthSetter {
    builder: TimestampBuilder,
}

impl MonthSetter {
    // Libraries have conflicting opinions about whether months should be
    // 0- or 1-indexed, so Timestamp follows chrono's lead and provides
    // convenient ways to do both. Internally, it uses a 1-based representation.

    // 0-indexed month
    pub fn with_month0(self, year: u32) -> DaySetter {
        self.with_month(year + 1)
    }

    // 1-indexed month
    pub fn with_month(self, month: u32) -> DaySetter {
        let mut builder = self.builder;
        builder.precision = Precision::Month;
        builder.month = Some(month as u8);
        DaySetter { builder }
    }

    pub fn build(self) -> IonResult<Timestamp> {
        self.into_builder().build()
    }
}

/// Allows the user to set the `day` field on a builder that has already had its `year`
/// and `month` fields set. Or, if `Month` is the desired precision, they may build the [Timestamp]
/// with an unknown offset instead.
#[derive(Debug, Clone)]
pub struct DaySetter {
    builder: TimestampBuilder,
}

impl DaySetter {
    // Libraries have conflicting opinions about whether days should be
    // 0- or 1-indexed, so Timestamp follows chrono's lead and provides
    // convenient ways to do both. Internally, it uses a 1-based representation.

    // 0-indexed day
    pub fn with_day0(self, day: u32) -> HourAndMinuteSetter {
        self.with_day(day + 1)
    }

    // 1-indexed day
    pub fn with_day(self, day: u32) -> HourAndMinuteSetter {
        let mut builder = self.builder;
        builder.precision = Precision::Day;
        builder.day = Some(day as u8);
        HourAndMinuteSetter { builder }
    }

    pub fn build(self) -> IonResult<Timestamp> {
        self.into_builder().build()
    }
}

/// Allows the user to set the `hour` and `minute` fields on a builder that has already
/// had its `year`, `month`, and `day` fields set. Or, if `Day` is the desired precision,
/// they may build the [Timestamp] with an unknown offset instead.
#[derive(Debug, Clone)]
pub struct HourAndMinuteSetter {
    builder: TimestampBuilder,
}

impl HourAndMinuteSetter {
    pub fn with_hms(self, hour: u32, minute: u32, second: u32) -> FractionalSecondSetter {
        let mut builder = self.builder;
        builder.hour = Some(hour as u8);
        builder.minute = Some(minute as u8);
        builder.second = Some(second as u8);
        builder.precision = Precision::Second;
        FractionalSecondSetter { builder }
    }

    pub fn with_hour_and_minute(self, hour: u32, minute: u32) -> SecondSetter {
        let mut builder = self.builder;
        builder.precision = Precision::HourAndMinute;
        builder.hour = Some(hour as u8);
        builder.minute = Some(minute as u8);
        SecondSetter { builder }
    }

    pub fn build(self) -> IonResult<Timestamp> {
        self.into_builder().build()
    }
}

/// Allows the user to set the `second` field on a builder that has already
/// had its `year`, `month`, `day`, `hour`, and `minute` fields set. Or, if `HourAndMinute` is the
/// desired precision, they may build the [Timestamp] instead, optionally specifying an offset if
/// known.
#[derive(Debug, Clone)]
pub struct SecondSetter {
    builder: TimestampBuilder,
}

impl SecondSetter {
    pub fn with_second(self, second: u32) -> FractionalSecondSetter {
        let mut builder = self.builder;
        builder.precision = Precision::Second;
        builder.second = Some(second as u8);
        FractionalSecondSetter { builder }
    }

    /// Sets the difference, in minutes, from UTC. A positive value indicates
    /// Eastern Hemisphere, while a negative value indicates Western Hemisphere.
    // The unit (minutes) could be seconds (which is what the chrono crate uses
    // internally), but Ion uses minutes in its binary representation, so it
    // makes sense to be consistent.
    pub fn build_at_offset(mut self, offset_minutes: i32) -> IonResult<Timestamp> {
        self.builder.offset = Some(offset_minutes);
        self.into_builder().build()
    }

    /// Like [Self::build_at_offset], but the fields provided for each time unit are understood
    /// to be in UTC rather than in the local time of the specified offset.
    pub fn build_utc_fields_at_offset(mut self, offset_minutes: i32) -> IonResult<Timestamp> {
        self.builder.fields_are_utc = true;
        self.build_at_offset(offset_minutes)
    }

    pub fn build_at_unknown_offset(mut self) -> IonResult<Timestamp> {
        self.builder.offset = None;
        self.into_builder().build()
    }
}

/// Allows the user to set the `fractional_seconds` field on a builder that has already
/// had its `year`, `month`, `day`, `hour`, `minute`, and `second` fields set. Or, if
/// `Second` is the desired precision, they may build the [Timestamp] instead, optionally
/// specifying an offset if known.
#[derive(Debug, Clone)]
pub struct FractionalSecondSetter {
    builder: TimestampBuilder,
}

impl FractionalSecondSetter {
    // Note that in order to create a `FractionalSecondSetter`, the user will have had to first
    // create a `SecondSetter`. Because of this, the builder's precision is already set to
    // `Precision::Second`.
    pub fn with_nanoseconds(self, nanosecond: u32) -> FractionalSecondSetter {
        let mut builder = self.builder;
        builder.fractional_seconds = Some(Mantissa::Digits(9));
        builder.nanoseconds = Some(nanosecond);
        FractionalSecondSetter { builder }
    }

    pub fn with_microseconds(self, microsecond: u32) -> FractionalSecondSetter {
        let mut builder = self.builder;
        builder.fractional_seconds = Some(Mantissa::Digits(6));
        builder.nanoseconds = Some(microsecond * 1000);
        FractionalSecondSetter { builder }
    }

    pub fn with_milliseconds(self, millisecond: u32) -> FractionalSecondSetter {
        let mut builder = self.builder;
        builder.fractional_seconds = Some(Mantissa::Digits(3));
        builder.nanoseconds = Some(millisecond * 1_000_000);
        FractionalSecondSetter { builder }
    }

    pub fn with_nanoseconds_and_precision(
        self,
        nanoseconds: u32,
        precision_digits: u32,
    ) -> FractionalSecondSetter {
        let mut builder = self.builder;
        builder.fractional_seconds = Some(Mantissa::Digits(precision_digits));
        builder.nanoseconds = Some(nanoseconds);
        FractionalSecondSetter { builder }
    }

    pub fn with_fractional_seconds(self, fractional_seconds: Decimal) -> FractionalSecondSetter {
        let mut builder = self.builder;
        builder.fractional_seconds = Some(Mantissa::Arbitrary(fractional_seconds));
        builder.nanoseconds = None;
        FractionalSecondSetter { builder }
    }

    pub fn build_at_offset(mut self, offset_minutes: i32) -> IonResult<Timestamp> {
        self.builder.offset = Some(offset_minutes);
        self.into_builder().build()
    }

    /// Like [Self::build_at_offset], but the fields provided for each time unit are understood
    /// to be in UTC rather than in the local time of the specified offset.
    pub fn build_utc_fields_at_offset(mut self, offset_minutes: i32) -> IonResult<Timestamp> {
        self.builder.fields_are_utc = true;
        self.build_at_offset(offset_minutes)
    }

    pub fn build_at_unknown_offset(mut self) -> IonResult<Timestamp> {
        self.builder.offset = None;
        self.into_builder().build()
    }
}

trait TimeUnitSetter {
    fn into_builder(self) -> TimestampBuilder;
}

macro_rules! impl_time_unit_setter_for {
    ($type_name:ty) => {
        impl TimeUnitSetter for $type_name {
            fn into_builder(self) -> TimestampBuilder {
                self.builder
            }
        }
    };
}

impl_time_unit_setter_for!(MonthSetter);
impl_time_unit_setter_for!(DaySetter);
impl_time_unit_setter_for!(HourAndMinuteSetter);
impl_time_unit_setter_for!(SecondSetter);
impl_time_unit_setter_for!(FractionalSecondSetter);

fn downconvert_to_naive_datetime_with_nanoseconds(timestamp: &Timestamp) -> NaiveDateTime {
    if timestamp.precision == Precision::Second {
        // DateTime always uses nanosecond precision. If our Timestamp uses a Decimal for
        // its fractional seconds, attempt to convert it to a number of nanoseconds.
        // This operation may add or lose precision, but is necessary to conform with
        // chrono's expectations.
        let nanoseconds = timestamp.fractional_seconds_as_nanoseconds().unwrap_or(0);
        // Copy `self.date_time` and set the copy's nanoseconds to this new value.
        // Modifying the nanoseconds should never be invalid.
        timestamp.date_time.with_nanosecond(nanoseconds).unwrap()
    } else {
        // NaiveDateTime implements `Copy`
        timestamp.date_time
    }
}

// Allows a Timestamp with an unknown offset to be converted to a NaiveDateTime.
impl TryInto<NaiveDateTime> for Timestamp {
    type Error = IonError;

    fn try_into(self) -> Result<NaiveDateTime, Self::Error> {
        if self.offset.is_some() {
            return illegal_operation(
                "cannot convert a Timestamp with a known offset into a NaiveDateTime",
            );
        }
        Ok(downconvert_to_naive_datetime_with_nanoseconds(&self))
    }
}

impl TryInto<DateTime<FixedOffset>> for Timestamp {
    type Error = IonError;

    fn try_into(self) -> Result<DateTime<FixedOffset>, Self::Error> {
        if self.offset.is_none() {
            return illegal_operation(
                "cannot convert a Timestamp with an unknown offset into a DateTime<FixedOffset>",
            );
        }
        let date_time = downconvert_to_naive_datetime_with_nanoseconds(&self);
        Ok(self.offset.unwrap().from_utc_datetime(&date_time))
    }
}

// Allows a NaiveDateTime to be converted to a Timestamp with an unknown offset.
impl From<NaiveDateTime> for Timestamp {
    fn from(date_time: NaiveDateTime) -> Self {
        Timestamp {
            date_time,
            offset: None,
            precision: Precision::Second,
            fractional_seconds: Some(Mantissa::Digits(9)),
        }
    }
}

// Allows a DateTime<FixedOffset> to be converted to a Timestamp with the correct offset in minutes.
impl From<DateTime<FixedOffset>> for Timestamp {
    fn from(fixed_offset_date_time: DateTime<FixedOffset>) -> Self {
        // Discard the offset
        let date_time = fixed_offset_date_time.naive_utc();
        // Get a copy of the offset to store separately
        let offset = Some(*fixed_offset_date_time.offset());
        let precision = Precision::Second;
        let fractional_seconds = Some(Mantissa::Digits(9));
        Timestamp {
            date_time,
            offset,
            precision,
            fractional_seconds,
        }
    }
}

#[cfg(test)]
mod timestamp_tests {
    use super::*;
    use crate::ion_data::IonEq;
    use crate::result::IonResult;
    use crate::types::{Decimal, Mantissa, Precision, Timestamp};
    use chrono::{DateTime, FixedOffset, NaiveDate, NaiveDateTime, TimeZone, Timelike};
    use rstest::*;
    use std::cmp::Ordering;
    use std::convert::TryInto;
    use std::io::Write;
    use std::str::FromStr;

    #[test]
    fn test_timestamps_with_same_ymd_hms_millis_at_known_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms_millis(2021, 2, 5, 16, 43, 51, 192);
        let timestamp1 = builder.clone().build_at_offset(5 * 60)?;
        let timestamp2 = builder.build_at_offset(5 * 60)?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ymd_hms_millis_at_known_offset_are_equal_ordering() -> IonResult<()>
    {
        let builder = Timestamp::with_ymd_hms_millis(2021, 2, 5, 16, 43, 51, 192);
        let timestamp1 = builder.clone().build_at_offset(5 * 60)?;
        let timestamp2 = builder.build_at_offset(5 * 60)?;
        assert!(timestamp1 == timestamp2);
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ymd_hms_millis_at_unknown_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms_millis(2021, 2, 5, 16, 43, 51, 192);
        let timestamp1 = builder.clone().build_at_unknown_offset()?;
        let timestamp2 = builder.build_at_unknown_offset()?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ymd_hms_at_known_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms(2021, 2, 5, 16, 43, 51);
        let timestamp1 = builder.clone().build_at_offset(5 * 60)?;
        let timestamp2 = builder.build_at_offset(5 * 60)?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_from_utc_and_local_hm_fields_at_same_offset_are_equal() -> IonResult<()> {
        // Builder 1 specifies its time fields in the local time of the specified offset
        let builder1 = Timestamp::with_ymd(2021, 2, 5).with_hour_and_minute(11, 43);
        let timestamp1 = builder1.build_at_offset(-5 * 60)?;
        // Builder 2 specifies its time fields in UTC and expects the offset to be applied afterwards
        let builder2 = Timestamp::with_ymd(2021, 2, 5).with_hour_and_minute(16, 43);
        let timestamp2 = builder2.build_utc_fields_at_offset(-5 * 60)?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_from_utc_and_local_hms_fields_at_same_offset_are_equal() -> IonResult<()> {
        // Builder 1 specifies its time fields in the local time of the specified offset
        let builder1 = Timestamp::with_ymd_hms(2021, 2, 5, 11, 43, 51);
        let timestamp1 = builder1.build_at_offset(-5 * 60)?;
        // Builder 2 specifies its time fields in UTC and expects the offset to be applied afterwards
        let builder2 = Timestamp::with_ymd_hms(2021, 2, 5, 16, 43, 51);
        let timestamp2 = builder2.build_utc_fields_at_offset(-5 * 60)?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ymd_hms_at_unknown_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms(2021, 2, 5, 16, 43, 51);
        let timestamp1 = builder.clone().build_at_unknown_offset()?;
        let timestamp2 = builder.build_at_unknown_offset()?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ymd_hm_at_known_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd(2021, 2, 5).with_hour_and_minute(16, 43);
        let timestamp1 = builder.clone().build_at_offset(5 * 60)?;
        let timestamp2 = builder.build_at_offset(5 * 60)?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ymd_hm_at_unknown_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd(2021, 2, 5).with_hour_and_minute(16, 43);
        let timestamp1 = builder.clone().build_at_unknown_offset()?;
        let timestamp2 = builder.build_at_unknown_offset()?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ymd_at_unknown_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd(2021, 2, 5);
        let timestamp1 = builder.clone().build()?;
        let timestamp2 = builder.build()?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_ym_at_unknown_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_year(2021).with_month(2);
        let timestamp1 = builder.clone().build()?;
        let timestamp2 = builder.build()?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_same_year_at_unknown_offset_are_equal() -> IonResult<()> {
        let builder = Timestamp::with_year(2021);
        let timestamp1 = builder.clone().build()?;
        let timestamp2 = builder.build()?;
        assert_eq!(timestamp1, timestamp2);
        assert!(timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_at_different_offsets_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms_millis(2021, 2, 5, 16, 43, 51, 192);
        let timestamp1 = builder.clone().build_at_offset(5 * 60)?;
        let timestamp2 = builder.build_at_offset(4 * 60)?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_known_and_unknown_offsets_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms_millis(2021, 2, 5, 16, 43, 51, 192);
        let timestamp1 = builder.clone().build_at_offset(5 * 60)?;
        let timestamp2 = builder.build_at_unknown_offset()?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_precisions_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms(2021, 2, 5, 16, 43, 51);
        let timestamp1 = builder.clone().build_at_offset(5 * 60)?;
        let timestamp2 = builder.with_milliseconds(192).build_at_offset(5 * 60)?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_fractional_second_precision_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms(2021, 2, 5, 16, 43, 51);
        let timestamp1 = builder
            .clone()
            .with_milliseconds(192)
            .build_at_offset(5 * 60)?;
        // The microseconds field has the same amount of time, but a different precision.
        let timestamp2 = builder
            .with_microseconds(193 * 1_000)
            .build_at_offset(5 * 60)?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_fractional_seconds_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd_hms(2021, 2, 5, 16, 43, 51);
        let timestamp1 = builder
            .clone()
            .with_milliseconds(192)
            .build_at_offset(5 * 60)?;
        let timestamp2 = builder.with_milliseconds(193).build_at_offset(5 * 60)?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_seconds_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd(2021, 2, 5).with_hour_and_minute(16, 43);
        let timestamp1 = builder.clone().with_second(12).build_at_offset(5 * 60)?;
        let timestamp2 = builder.with_second(13).build_at_offset(5 * 60)?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_minutes_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd(2021, 2, 5);
        let timestamp1 = builder
            .clone()
            .with_hour_and_minute(16, 42)
            .build_at_offset(5 * 60)?;
        let timestamp2 = builder
            .with_hour_and_minute(16, 43)
            .build_at_offset(5 * 60)?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_hours_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_ymd(2021, 2, 5);
        let timestamp1 = builder
            .clone()
            .with_hour_and_minute(16, 42)
            .build_at_offset(5 * 60)?;
        let timestamp2 = builder
            .with_hour_and_minute(17, 42)
            .build_at_offset(5 * 60)?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_days_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_year(2021).with_month(2);
        let timestamp1 = builder.clone().with_day(5).build()?;
        let timestamp2 = builder.with_day(6).build()?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_months_are_not_equal() -> IonResult<()> {
        let builder = Timestamp::with_year(2021);
        let timestamp1 = builder.clone().with_month(2).build()?;
        let timestamp2 = builder.with_month(3).build()?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamps_with_different_years_are_not_equal() -> IonResult<()> {
        let timestamp1 = Timestamp::with_year(2021).build()?;
        let timestamp2 = Timestamp::with_year(2022).build()?;
        assert_ne!(timestamp1, timestamp2);
        assert!(!timestamp1.ion_eq(&timestamp2));
        Ok(())
    }

    #[test]
    fn test_timestamp_try_into_naive_datetime() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_unknown_offset()?;
        let naive_datetime: NaiveDateTime = timestamp.try_into()?;
        let expected = NaiveDate::from_ymd_opt(2021, 4, 6)
            .unwrap()
            .and_hms_opt(10, 15, 0)
            .unwrap();
        assert_eq!(expected, naive_datetime);
        Ok(())
    }

    #[test]
    fn test_timestamp_try_into_naive_datetime_fractional_seconds() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0)
            .with_milliseconds(449)
            .build_at_unknown_offset()?;
        let datetime: NaiveDateTime = timestamp.try_into()?;
        let naive_datetime = NaiveDate::from_ymd_opt(2021, 4, 6)
            .unwrap()
            .and_hms_opt(10, 15, 0)
            .unwrap()
            .with_nanosecond(449000000)
            .unwrap();
        assert_eq!(datetime, naive_datetime);
        Ok(())
    }

    #[test]
    fn test_timestamp_try_into_naive_datetime_error() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 1, 1, 0, 0, 0).build_at_offset(0)?;
        //     ^---- This timestamp has a known offset, so we cannot convert it into a NaiveDateTime
        let result: IonResult<NaiveDateTime> = timestamp.try_into();
        assert!(result.is_err());
        Ok(())
    }

    #[test]
    fn test_timestamp_try_into_fixed_offset_datetime() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_offset(-5 * 60)?;
        //                    ^-- Timestamp's offset API takes minutes
        let datetime: DateTime<FixedOffset> = timestamp.try_into()?;
        // chrono's FixedOffset takes seconds ----------v
        let expected_offset = offset_east(-5 * 60 * 60);
        let naive_datetime = NaiveDate::from_ymd_opt(2021, 4, 6)
            .unwrap()
            .and_hms_opt(10, 15, 0)
            .unwrap();
        let expected_datetime = expected_offset
            .from_local_datetime(&naive_datetime)
            .unwrap();
        assert_eq!(datetime, expected_datetime);
        Ok(())
    }

    #[test]
    fn test_timestamp_try_into_fixed_offset_datetime_fractional_seconds() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0)
            .with_milliseconds(449)
            .build_at_offset(-5 * 60)?;
        //                    ^-- Timestamp's offset API takes minutes
        let datetime: DateTime<FixedOffset> = timestamp.try_into()?;
        // chrono's FixedOffset takes seconds ----------v
        let expected_offset = offset_east(-5 * 60 * 60);
        let naive_datetime = NaiveDate::from_ymd_opt(2021, 4, 6)
            .unwrap()
            .and_hms_opt(10, 15, 0)
            .unwrap()
            .with_nanosecond(449000000)
            .unwrap();
        let expected_datetime = expected_offset
            .from_local_datetime(&naive_datetime)
            .unwrap();
        assert_eq!(datetime, expected_datetime);
        Ok(())
    }

    #[test]
    fn test_timestamp_try_into_datetime_fixedoffset_error() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 1, 1, 0, 0, 0).build_at_unknown_offset()?;
        //     ^---- This timestamp has an unknown offset, so we cannot convert it into a DateTime<FixedOffset>
        let result: IonResult<DateTime<FixedOffset>> = timestamp.try_into();
        assert!(result.is_err());
        Ok(())
    }

    #[test]
    fn test_timestamp_builder() {
        // Using individual field setters produces the same Timestamp as using setters
        // for common combinations of fields (with_ymd, with_hms).
        let timestamp1 = Timestamp::with_year(2021)
            .with_month(2)
            .with_day(5)
            .with_hour_and_minute(17, 39)
            .with_second(51)
            .with_milliseconds(194)
            .build_at_offset(-4 * 60)
            .unwrap_or_else(|e| panic!("Couldn't build timestamp: {e:?}"));

        let timestamp2 = Timestamp::with_ymd(2021, 2, 5)
            .with_hms(17, 39, 51)
            .with_milliseconds(194)
            .build_at_offset(-4 * 60)
            .unwrap_or_else(|e| panic!("Couldn't build timestamp: {e:?}"));

        let timestamp3 = Timestamp::with_ymd_hms_millis(2021, 2, 5, 17, 39, 51, 194)
            .build_at_offset(-4 * 60)
            .unwrap_or_else(|e| panic!("Couldn't build timestamp: {e:?}"));

        assert_eq!(timestamp1.precision, Precision::Second);
        assert_eq!(timestamp1.fractional_seconds, Some(Mantissa::Digits(3)));
        assert_eq!(timestamp1, timestamp2);
        assert_eq!(timestamp2, timestamp3);

        assert!(timestamp1.ion_eq(&timestamp2));
        assert!(timestamp1.ion_eq(&timestamp3));
    }

    #[test]
    fn test_timestamp_fixed_offset() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0)
            .with_milliseconds(449)
            .build_at_offset(-5 * 60)?;
        //                    ^-- Timestamp's offset API takes minutes
        // expected offset in minutes
        let expected_offset = -5 * 60;

        assert_eq!(timestamp.offset().unwrap(), expected_offset);
        Ok(())
    }

    #[test]
    fn test_timestamp_precision() -> IonResult<()> {
        let timestamp = Timestamp::with_year(2021).with_month(2).build()?;
        assert_eq!(timestamp.precision(), Precision::Month);
        Ok(())
    }

    #[test]
    fn test_timestamp_year() -> IonResult<()> {
        let timestamp_1 = Timestamp::with_year(2021).with_month(2).build()?;
        assert_eq!(timestamp_1.year(), 2021);

        let timestamp_2 =
            Timestamp::with_ymd_hms(2021, 12, 31, 10, 15, 30).build_at_offset(-11 * 60)?;

        assert_eq!(timestamp_2.year(), 2021);

        let timestamp_3 =
            Timestamp::with_ymd_hms(2021, 12, 31, 15, 15, 30).build_at_offset(10 * 60)?;

        assert_eq!(timestamp_3.year(), 2021);

        Ok(())
    }

    #[test]
    fn test_timestamp_month() -> IonResult<()> {
        let timestamp_1 = Timestamp::with_year(2021).with_month(2).build()?;
        assert_eq!(timestamp_1.month(), 2);

        let timestamp_2 =
            Timestamp::with_ymd_hms(2021, 1, 31, 10, 15, 30).build_at_offset(-11 * 60)?;

        assert_eq!(timestamp_2.month(), 1);

        let timestamp_3 =
            Timestamp::with_ymd_hms(2021, 1, 31, 15, 15, 30).build_at_offset(10 * 60)?;

        assert_eq!(timestamp_3.month(), 1);

        Ok(())
    }

    #[test]
    fn test_timestamp_day() -> IonResult<()> {
        let timestamp_1 = Timestamp::with_year(2021).with_month(2).build()?;
        assert_eq!(timestamp_1.day(), 1);

        let timestamp_2 = Timestamp::with_year(2021)
            .with_month(2)
            .with_day(4)
            .build()?;

        assert_eq!(timestamp_2.day(), 4);

        let timestamp_3 =
            Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-11 * 60)?;

        assert_eq!(timestamp_3.day(), 6);

        let timestamp_4 =
            Timestamp::with_ymd_hms(2021, 4, 6, 15, 15, 30).build_at_offset(10 * 60)?;

        assert_eq!(timestamp_4.day(), 6);

        Ok(())
    }

    #[rstest]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-90), 10)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-5 * 60), 10)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(5 * 60), 10)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(15), 10)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(30), 10)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(0), 10)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 0, 15, 30).build_at_offset(5 * 60), 0)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 23, 15, 30).build_at_offset(-5 * 60), 23)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 0, 15, 30).build_at_offset(23 * 60), 0)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-11 * 60), 10)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 15, 15, 30).build_at_offset(10 * 60), 15)]
    fn test_timestamp_hour(
        #[case] timestamp: IonResult<Timestamp>,
        #[case] expected_hours: u32,
    ) -> IonResult<()> {
        assert_eq!(timestamp?.hour(), expected_hours);
        Ok(())
    }

    #[rstest]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-90), 15)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-5 * 60), 15)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(5 * 60), 15)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(0), 15)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 0, 30).build_at_offset(5 * 60), 0)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 59, 30).build_at_offset(5 * 60), 59)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-11 * 60), 15)]
    #[case(Timestamp::with_ymd_hms(2021, 4, 6, 15, 15, 30).build_at_offset(10 * 60), 15)]
    fn test_timestamp_minute(
        #[case] timestamp: IonResult<Timestamp>,
        #[case] expected_minutes: u32,
    ) -> IonResult<()> {
        assert_eq!(timestamp?.minute(), expected_minutes);
        Ok(())
    }

    #[test]
    fn test_timestamp_second() -> IonResult<()> {
        let timestamp = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-5 * 60)?;
        assert_eq!(timestamp.second(), 30);
        Ok(())
    }

    #[test]
    fn test_timestamp_nanoseconds() -> IonResult<()> {
        let timestamp_1 = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30)
            .with_nanoseconds(192)
            .build_at_offset(-5 * 60)?;
        assert_eq!(timestamp_1.nanoseconds(), 192);

        let timestamp_2 = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30)
            .with_milliseconds(192)
            .build_at_offset(-5 * 60)?;
        assert_eq!(timestamp_2.nanoseconds(), 192000000);

        let timestamp_3 =
            Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-5 * 60)?;
        assert_eq!(timestamp_3.nanoseconds(), 0);

        Ok(())
    }

    #[test]
    fn test_timestamp_milliseconds() -> IonResult<()> {
        let timestamp_1 = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30)
            .with_milliseconds(192)
            .build_at_offset(-5 * 60)?;
        assert_eq!(timestamp_1.milliseconds(), 192);

        let timestamp_2 =
            Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 30).build_at_offset(-5 * 60)?;
        assert_eq!(timestamp_2.milliseconds(), 0);
        Ok(())
    }

    #[test]
    fn test_timestamp_to_utc() -> IonResult<()> {
        let new_years_eve_nyc =
            Timestamp::with_ymd_hms(2022, 12, 31, 23, 59, 00).build_at_offset(-5 * 60)?;

        let london = new_years_eve_nyc.to_utc();
        assert_eq!(london.year(), 2023);
        assert_eq!(london.month(), 1);
        assert_eq!(london.day(), 1);
        assert_eq!(london.hour(), 4);
        assert_eq!(london.minute(), 59);
        assert_eq!(london.second(), 0);
        Ok(())
    }

    #[test]
    fn test_timestamp_fractional_seconds_scale() -> IonResult<()> {
        // Set fractional seconds as Decimal
        let timestamp_with_micro_seconds = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0)
            .with_fractional_seconds(Decimal::new(553u64, -6))
            .build_at_offset(-5 * 60)?;

        assert_eq!(
            timestamp_with_micro_seconds
                .fractional_seconds_scale()
                .unwrap(),
            6
        );

        // Set fractional seconds as Decimal with 0 coefficient and non-negative exponent
        // "Fractions whose coefficient is zero and exponent is greater than -1 are ignored."
        let timestamp_with_redundant_fractional_seconds =
            Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0)
                .with_fractional_seconds(Decimal::new(0, 6))
                .build_at_offset(-5 * 60)?;
        assert_eq!(
            timestamp_with_redundant_fractional_seconds.precision,
            Precision::Second
        );
        assert_eq!(
            timestamp_with_redundant_fractional_seconds.fractional_seconds_scale(),
            None
        );

        // Set fractional seconds with milliseconds
        let timestamp_with_milliseconds = Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0)
            .with_milliseconds(449)
            .build_at_offset(-5 * 60)?;

        assert_eq!(
            timestamp_with_milliseconds
                .fractional_seconds_scale()
                .unwrap(),
            3
        );

        // Set a fractional seconds as Decimal with low precision
        let timestamp_with_seconds =
            Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_offset(-5 * 60)?;

        // For low precision fractional_seconds_scale should return a None
        assert_eq!(timestamp_with_seconds.fractional_seconds_scale(), None);
        Ok(())
    }

    #[test]
    fn test_first_n_digits_of() {
        assert_eq!(0, super::first_n_digits_of(1, 0));
        assert_eq!(1, super::first_n_digits_of(1, 1));
        assert_eq!(2, super::first_n_digits_of(1, 2));

        assert_eq!(0, super::first_n_digits_of(3, 0));
        assert_eq!(1, super::first_n_digits_of(3, 1));
        assert_eq!(2, super::first_n_digits_of(3, 2));
        assert_eq!(99, super::first_n_digits_of(9, 99));
        assert_eq!(999, super::first_n_digits_of(9, 999));
        assert_eq!(9999, super::first_n_digits_of(9, 9999));

        assert_eq!(0, super::first_n_digits_of(0, 123456789));
        assert_eq!(1, super::first_n_digits_of(1, 123456789));
        assert_eq!(12, super::first_n_digits_of(2, 123456789));
        assert_eq!(123, super::first_n_digits_of(3, 123456789));
        assert_eq!(1234, super::first_n_digits_of(4, 123456789));
        assert_eq!(12345, super::first_n_digits_of(5, 123456789));
        assert_eq!(123456, super::first_n_digits_of(6, 123456789));
        assert_eq!(1234567, super::first_n_digits_of(7, 123456789));
        assert_eq!(12345678, super::first_n_digits_of(8, 123456789));
        assert_eq!(123456789, super::first_n_digits_of(9, 123456789));
    }

    #[rstest]
    #[case::timestamp_with_same_year(Timestamp::with_year(2020).build().unwrap(), Timestamp::with_year(2020).build().unwrap(), Ordering::Equal)]
    #[case::timestamp_with_different_year(Timestamp::with_year(2020).build().unwrap(), Timestamp::with_year(2021).build().unwrap(), Ordering::Less)]
    #[case::timestamp_with_milliseconds(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_milliseconds(449).build_at_offset(5 * 60).unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_milliseconds(449).build_at_offset(5 * 60).unwrap(), Ordering::Equal)]
    #[case::timestamp_with_milliseconds_nanoseconds(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_milliseconds(449).build_at_offset(5 * 60).unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_nanoseconds(449000005).build_at_offset(5 * 60).unwrap(), Ordering::Less)]
    #[case::timestamp_with_fractional_seconds(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_fractional_seconds(Decimal::new(449u64, -3)).build_at_offset(5 * 60).unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_nanoseconds(449000000).build_at_offset(5 * 60).unwrap(), Ordering::Equal)]
    #[case::timestamp_with_different_precision(Timestamp::with_year(2020).with_month(3).build().unwrap(), Timestamp::with_year(2020).build().unwrap(), Ordering::Greater)]
    #[case::timestamp_with_same_offset(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_offset(-5 * 60).unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_offset(-5 * 60).unwrap(), Ordering::Equal)]
    #[case::timestamp_with_different_offset(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_offset(5 * 60).unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_offset(-5 * 60).unwrap(), Ordering::Less)]
    #[case::timestamp_with_unknown_offset(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_unknown_offset().unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_offset(-5 * 60).unwrap(), Ordering::Less)]
    #[case::timestamp_with_unknown_offset(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_nanoseconds(0).build_at_unknown_offset().unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_unknown_offset().unwrap(), Ordering::Equal)]
    #[case::timestamp_with_unknown_offset(Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).with_nanoseconds(449000005).build_at_unknown_offset().unwrap(), Timestamp::with_ymd_hms(2021, 4, 6, 10, 15, 0).build_at_unknown_offset().unwrap(), Ordering::Greater)]
    #[case::timestamp_with_second_precison_and_year_precision(Timestamp::with_ymd(2001, 1, 1).build().unwrap(), Timestamp::with_ymd_hms(2001, 1, 1, 0, 0, 0).with_fractional_seconds(Decimal::new(00000000000000000000u128, -20)).build_at_unknown_offset().unwrap(), Ordering::Equal)]
    fn timestamp_ordering_tests(
        #[case] this: Timestamp,
        #[case] other: Timestamp,
        #[case] expected: Ordering,
    ) {
        assert_eq!(this.cmp(&other), expected)
    }

    #[test]
    fn ion_eq_fraction_seconds_mixed_mantissa() {
        let t1 = Timestamp {
            date_time: NaiveDateTime::from_str("1857-05-29T19:25:59.100").unwrap(),
            offset: Some(offset_east(60 * 60 * 23 + 60 * 59)),
            precision: Precision::Second,
            fractional_seconds: Some(Mantissa::Digits(1)),
        };
        let t2 = Timestamp {
            date_time: NaiveDateTime::from_str("1857-05-29T19:25:59").unwrap(),
            offset: Some(offset_east(60 * 60 * 23 + 60 * 59)),
            precision: Precision::Second,
            fractional_seconds: Some(Mantissa::Arbitrary(Decimal::new(1u64, -1))),
        };
        assert_eq!(t1, t2);
        assert!(t1.ion_eq(&t2));
    }

    #[test]
    fn ion_eq_fraction_seconds_mixed_mantissa_2() {
        let t1 = Timestamp {
            date_time: NaiveDateTime::from_str("2001-08-01T18:18:49.006").unwrap(),
            offset: Some(offset_east(60 * 60 + 60)),
            precision: Precision::Second,
            fractional_seconds: Some(Mantissa::Digits(5)),
        };
        let t2 = Timestamp {
            date_time: NaiveDateTime::from_str("2001-08-01T18:18:49").unwrap(),
            offset: Some(offset_east(60 * 60 + 60)),
            precision: Precision::Second,
            fractional_seconds: Some(Mantissa::Arbitrary(Decimal::new(600u64, -5))),
        };
        assert_eq!(t1, t2);
        assert!(t1.ion_eq(&t2));
    }

    #[rstest]
    #[case(Timestamp::with_year(3030).build().unwrap(), "3030T")]
    #[case(Timestamp::with_year(3030).with_month(11).build().unwrap(), "3030-11T")]
    #[case(Timestamp::with_ymd(3030, 3, 31).build().unwrap(), "3030-03-31T")]
    #[case(Timestamp::with_ymd(3030, 3, 31).with_hour_and_minute(17, 31).build_at_unknown_offset().unwrap(), "3030-03-31T17:31-00:00")]
    #[case(Timestamp::with_ymd(3030, 3, 31).with_hour_and_minute(17, 31).build_at_offset(-420).unwrap(), "3030-03-31T17:31-07:00")]
    #[case(Timestamp::with_ymd(3030, 3, 31).with_hour_and_minute(17, 31).build_utc_fields_at_offset(-420).unwrap(), "3030-03-31T10:31-07:00")]
    #[case(Timestamp::with_ymd_hms(3030, 3, 31, 17, 31, 57).build_at_offset(0).unwrap(), "3030-03-31T17:31:57+00:00")]
    #[case(Timestamp::with_ymd_hms(3030, 3, 31, 17, 31, 57).with_milliseconds(27).build_at_offset(0).unwrap(), "3030-03-31T17:31:57.027+00:00")]
    #[case(Timestamp::with_ymd_hms(3030, 3, 31, 17, 31, 57).with_microseconds(27).build_at_offset(0).unwrap(), "3030-03-31T17:31:57.000027+00:00")]
    #[case(Timestamp::with_ymd_hms(3030, 3, 31, 17, 31, 57).with_nanoseconds(27).build_at_offset(0).unwrap(), "3030-03-31T17:31:57.000000027+00:00")]
    #[case(Timestamp::with_ymd_hms(3030, 3, 31, 17, 31, 57).with_fractional_seconds(Decimal::new(27, -12)).build_at_offset(0).unwrap(), "3030-03-31T17:31:57.000000000027+00:00")]
    fn test_display(#[case] ts: Timestamp, #[case] expect: String) {
        let mut buf = Vec::new();
        write!(&mut buf, "{ts}").unwrap();
        assert_eq!(expect, String::from_utf8(buf).unwrap());
    }
}