1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
use crate::error::EvaluationError;

use crate::eval::expr::{BindError, EvalExpr};
use crate::eval::EvalContext;
use itertools::Itertools;

use partiql_types::{PartiqlType, TypeKind, TYPE_ANY};
use partiql_value::Value::{Missing, Null};
use partiql_value::{Tuple, Value};

use std::borrow::{Borrow, Cow};
use std::fmt::{Debug, Formatter};
use std::hash::Hash;

use std::marker::PhantomData;

use std::ops::ControlFlow;

// TODO replace with type system's subsumption once it is in place
#[inline]
pub(crate) fn subsumes(typ: &PartiqlType, value: &Value) -> bool {
    match (typ.kind(), value) {
        (_, Value::Null) => true,
        (_, Value::Missing) => true,
        (TypeKind::Any, _) => true,
        (TypeKind::AnyOf(anyof), val) => anyof.types().any(|typ| subsumes(typ, val)),
        (
            TypeKind::Int | TypeKind::Int8 | TypeKind::Int16 | TypeKind::Int32 | TypeKind::Int64,
            Value::Integer(_),
        ) => true,
        (TypeKind::Bool, Value::Boolean(_)) => true,
        (TypeKind::Decimal | TypeKind::DecimalP(_, _), Value::Decimal(_)) => true,
        (TypeKind::Float32 | TypeKind::Float64, Value::Real(_)) => true,
        (
            TypeKind::String | TypeKind::StringFixed(_) | TypeKind::StringVarying(_),
            Value::String(_),
        ) => true,
        (TypeKind::Struct(_), Value::Tuple(_)) => true,
        (TypeKind::Bag(b_type), Value::Bag(b_values)) => {
            let bag_element_type = b_type.element_type();
            let mut b_values = b_values.iter();
            b_values.all(|b_value| subsumes(bag_element_type, b_value))
        }
        (TypeKind::DateTime, Value::DateTime(_)) => true,

        (TypeKind::Array(a_type), Value::List(l_values)) => {
            let array_element_type = a_type.element_type();
            let mut l_values = l_values.iter();
            l_values.all(|l_value| subsumes(array_element_type, l_value))
        }
        _ => false,
    }
}

/// Convert a `Vec<Box<dyn EvalExpr>>` into a `[Box<dyn EvalExpr>; N]` or error on length mismatch
pub(crate) fn unwrap_args<const N: usize>(
    args: Vec<Box<dyn EvalExpr>>,
) -> Result<[Box<dyn EvalExpr>; N], BindError> {
    args.try_into()
        .map_err(|args: Vec<_>| BindError::ArgNumMismatch {
            expected: vec![N],
            found: args.len(),
        })
}

/// An expression that is evaluated over `N` input arguments
pub(crate) trait ExecuteEvalExpr<const N: usize>: Debug {
    /// Evaluate the expression
    fn evaluate<'a>(
        &'a self,
        args: [Cow<'a, Value>; N],
        ctx: &'a dyn EvalContext,
    ) -> Cow<'a, Value>;
}

/// Used to tell argument checking whether it should exit early or go on as usual.
///
/// Analogous to [`ControlFlow`], but with additional states to handle strict error reporting and
/// `NULL`/`MISSING` propagation.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) enum ArgCheckControlFlow<B, C, R = B> {
    /// Continue checking args; This arg is a `C`
    Continue(C),
    /// Immediately short-circuit return a `B`
    ShortCircuit(B),
    /// Immediately Error in strict mode or short-circuit return a `B` in permissive mode
    ErrorOrShortCircuit(B),
    /// Continue checking args, but propagate a `R` rather than executing the function
    Propagate(R),
}

/// A type which performs argument checking during evaluation.
pub(crate) trait ArgChecker: Debug {
    /// Check an argument against an expected type.
    fn arg_check<'a>(
        typ: &PartiqlType,
        arg: Cow<'a, Value>,
    ) -> ArgCheckControlFlow<Value, Cow<'a, Value>>;
}

/// How to handle argument mismatch and `MISSING` propagation
pub(crate) trait ArgShortCircuit: Debug {
    /// Whether a mismatch is an error in `STRICT` mode
    fn is_strict_error() -> bool;
    /// What to propagate on mismatch/`MISSING`
    fn propagate() -> Value;
}

/// Propagate `MISSING` on argument check failure
///
/// `[IS_ERR]` determines whether `[is_strict_error]` returns true.
#[derive(Debug)]
pub(crate) struct PropagateMissing<const IS_ERR: bool> {}
impl<const IS_ERR: bool> ArgShortCircuit for PropagateMissing<IS_ERR> {
    fn is_strict_error() -> bool {
        IS_ERR
    }

    #[inline]
    fn propagate() -> Value {
        Missing
    }
}

/// Propagate `NULL` on argument check failure
///
/// `IS_ERR` determines whether `is_strict_error` returns true.
#[derive(Debug)]
pub(crate) struct PropagateNull<const IS_ERR: bool> {}
impl<const IS_ERR: bool> ArgShortCircuit for PropagateNull<IS_ERR> {
    fn is_strict_error() -> bool {
        IS_ERR
    }

    #[inline]
    fn propagate() -> Value {
        Null
    }
}

/// An [`ArgChecker`] that performs checking appropriate for the majority of expressions and
/// functions.
///
/// Specifically:
/// - `MISSING` input arguments propagate according to the [`OnMissing`] generic parameter
/// - `NULL` input arguments propagate `NULL` to expression output
/// - Upon argument mismatch:
///   - In `STRICT` mode: an error according to the [`OnMissing`] generic parameter
///   - In `PERMISSIVE` mode: a short-circuit return according to the [`OnMissing`] generic parameter
#[derive(Debug)]
pub(crate) struct DefaultArgChecker<const STRICT: bool, OnMissing: ArgShortCircuit> {
    marker: PhantomData<OnMissing>,
}

impl<const STRICT: bool, OnMissing: ArgShortCircuit> ArgChecker
    for DefaultArgChecker<STRICT, OnMissing>
{
    fn arg_check<'a>(
        typ: &PartiqlType,
        arg: Cow<'a, Value>,
    ) -> ArgCheckControlFlow<Value, Cow<'a, Value>> {
        let err = || {
            if OnMissing::is_strict_error() {
                ArgCheckControlFlow::ErrorOrShortCircuit(OnMissing::propagate())
            } else {
                ArgCheckControlFlow::ShortCircuit(OnMissing::propagate())
            }
        };

        match arg.borrow() {
            Missing => ArgCheckControlFlow::Propagate(OnMissing::propagate()),
            Null => ArgCheckControlFlow::Propagate(Null),
            val => {
                if subsumes(typ, val) {
                    ArgCheckControlFlow::Continue(arg)
                } else {
                    err()
                }
            }
        }
    }
}

/// An [`ArgChecker`] that performs no checking.
#[derive(Debug)]
pub(crate) struct NullArgChecker {}

impl ArgChecker for NullArgChecker {
    fn arg_check<'a>(
        _typ: &PartiqlType,
        arg: Cow<'a, Value>,
    ) -> ArgCheckControlFlow<Value, Cow<'a, Value>> {
        ArgCheckControlFlow::Continue(arg)
    }
}

/// An [`EvalExpr`] which checks its `N` input arguments using `ArgC` and then delegates to an
/// [`ExecuteEvalExpr`].
///
/// Bridges between [`EvalExpr`] and [`ExecuteEvalExpr`]
///
///
pub(crate) struct ArgCheckEvalExpr<
    const STRICT: bool,
    const N: usize,
    E: ExecuteEvalExpr<N>,
    ArgC: ArgChecker,
> {
    /// The expected type of expression's positional arguments
    pub(crate) types: [PartiqlType; N],
    /// The expression's positional arguments
    pub(crate) args: [Box<dyn EvalExpr>; N],
    /// the expression
    pub(crate) expr: E,
    pub(crate) arg_check: PhantomData<ArgC>,
}

impl<const STRICT: bool, const N: usize, E: ExecuteEvalExpr<N>, ArgC: ArgChecker> Debug
    for ArgCheckEvalExpr<STRICT, N, E, ArgC>
{
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        self.expr.fmt(f)?;
        write!(f, "(")?;
        let mut sep = "";
        for arg in &self.args {
            write!(f, "{sep}")?;
            arg.fmt(f)?;
            sep = ", ";
        }
        write!(f, ")")?;
        Ok(())
    }
}

impl<const STRICT: bool, const N: usize, E: ExecuteEvalExpr<N>, ArgC: ArgChecker>
    ArgCheckEvalExpr<STRICT, N, E, ArgC>
{
    pub fn new(types: [PartiqlType; N], args: [Box<dyn EvalExpr>; N], expr: E) -> Self {
        Self {
            types,
            args,
            expr,
            arg_check: PhantomData {},
        }
    }

    /// Evaluate the input argument expressions in [`self.args`] in the environment, type check them,
    /// and convert them into an array of `N` `Cow<Value>`s.
    ///
    /// If type-checking fails, the appropriate failure case of [`ArgCheckControlFlow`] is returned,
    /// else [`ArgCheckControlFlow::Continue`] is returned containing the `N` values.
    pub fn evaluate_args<'a>(
        &'a self,
        bindings: &'a Tuple,
        ctx: &'a dyn EvalContext,
    ) -> ControlFlow<Value, [Cow<Value>; N]> {
        let err_arg_count_mismatch = |args: Vec<_>| {
            if STRICT {
                ctx.add_error(EvaluationError::IllegalState(format!(
                    "# of evaluated arguments ({}) does not match expectation {}",
                    args.len(),
                    N
                )));
            }
            ControlFlow::Break(Missing)
        };

        let mut result = Vec::with_capacity(N);

        let mut propagate = None;
        for i in 0..N {
            let typ = &self.types[i];
            let arg = self.args[i].evaluate(bindings, ctx);

            match ArgC::arg_check(typ, arg) {
                ArgCheckControlFlow::Continue(v) => {
                    if propagate.is_none() {
                        result.push(v)
                    }
                }
                ArgCheckControlFlow::Propagate(v) => {
                    propagate = match propagate {
                        None => Some(v),
                        Some(prev) => match (prev, v) {
                            (Null, Missing) => Missing,
                            (Missing, _) => Missing,
                            (Null, _) => Null,
                            (_, new) => new,
                        }
                        .into(),
                    };
                }
                ArgCheckControlFlow::ShortCircuit(v) => return ControlFlow::Break(v),
                ArgCheckControlFlow::ErrorOrShortCircuit(v) => {
                    if STRICT {
                        let signature = self
                            .types
                            .iter()
                            .map(|typ| format!("{}", typ.kind()))
                            .join(",");
                        let before = (0..i).map(|_| "_");
                        let arg = "MISSING"; // TODO display actual argument?
                        let after = (i + 1..N).map(|_| "_");
                        let arg_pattern = before.chain(std::iter::once(arg)).chain(after).join(",");
                        let msg = format!("expected `({signature})`, found `({arg_pattern})`");
                        ctx.add_error(EvaluationError::IllegalState(msg));
                    }
                    return ControlFlow::Break(v);
                }
            }
        }

        if let Some(v) = propagate {
            // If `propagate` is a `Some`, then argument type checking failed, propagate the value
            ControlFlow::Break(v)
        } else {
            // If `propagate` is `None`, then try to convert the `result` vec into an array of `N`
            match result.try_into() {
                Ok(a) => ControlFlow::Continue(a),
                Err(args) => err_arg_count_mismatch(args),
            }
        }
    }
}

impl<const STRICT: bool, const N: usize, E: ExecuteEvalExpr<N>, ArgC: ArgChecker> EvalExpr
    for ArgCheckEvalExpr<STRICT, N, E, ArgC>
{
    fn evaluate<'a>(&'a self, bindings: &'a Tuple, ctx: &'a dyn EvalContext) -> Cow<'a, Value> {
        if STRICT && ctx.has_errors() {
            return Cow::Owned(Missing);
        }
        match self.evaluate_args(bindings, ctx) {
            ControlFlow::Continue(args) => self.expr.evaluate(args, ctx),
            ControlFlow::Break(short_circuit) => Cow::Owned(short_circuit),
        }
    }
}

/// Wraps an `Fn` for use as an [`ExecuteEvalExpr`] executed by an [`ArgCheckEvalExpr`].
pub(crate) struct EvalExprWrapper<E, F> {
    pub ident: E,
    pub f: F,
}

impl<E, F> Debug for EvalExprWrapper<E, F>
where
    E: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        self.ident.fmt(f)
    }
}

impl<E: 'static, F: 'static> EvalExprWrapper<E, F> {
    #[inline]
    pub(crate) fn create_checked<const STRICT: bool, const N: usize, ArgC: 'static + ArgChecker>(
        ident: E,
        types: [PartiqlType; N],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        EvalExprWrapper<E, F>: ExecuteEvalExpr<N>,
    {
        let args = unwrap_args(args)?;
        let expr = Self { ident, f };
        let expr = ArgCheckEvalExpr::<STRICT, N, _, ArgC>::new(types, args, expr);
        Ok(Box::new(expr))
    }
}

/// An [`ExecuteEvalExpr`] over a single [`Value`] argument
#[derive(Debug, Default, Copy, Clone)]
pub(crate) struct UnaryValueExpr {}

impl<F> ExecuteEvalExpr<1> for EvalExprWrapper<UnaryValueExpr, F>
where
    F: Fn(&Value) -> Value,
{
    #[inline]
    fn evaluate<'a>(
        &'a self,
        args: [Cow<'a, Value>; 1],
        _ctx: &'a dyn EvalContext,
    ) -> Cow<'a, Value> {
        let [arg] = args;
        Cow::Owned((self.f)(arg.borrow()))
    }
}

impl UnaryValueExpr {
    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_with_any<const STRICT: bool, F: 'static>(
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value) -> Value,
    {
        Self::create_typed::<STRICT, F>([TYPE_ANY; 1], args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_typed<const STRICT: bool, F: 'static>(
        types: [PartiqlType; 1],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value) -> Value,
    {
        type Check<const STRICT: bool> = DefaultArgChecker<STRICT, PropagateMissing<true>>;
        Self::create_checked::<{ STRICT }, Check<STRICT>, F>(types, args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_checked<const STRICT: bool, ArgC, F: 'static>(
        types: [PartiqlType; 1],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value) -> Value,
        ArgC: 'static + ArgChecker,
    {
        EvalExprWrapper::create_checked::<{ STRICT }, 1, ArgC>(Self::default(), types, args, f)
    }
}

/// An [`ExecuteEvalExpr`] over a pair of [`Value`] arguments
#[derive(Debug, Default, Copy, Clone)]
pub(crate) struct BinaryValueExpr {}

impl<F> ExecuteEvalExpr<2> for EvalExprWrapper<BinaryValueExpr, F>
where
    F: Fn(&Value, &Value) -> Value,
{
    #[inline]
    fn evaluate<'a>(
        &'a self,
        args: [Cow<'a, Value>; 2],
        _ctx: &'a dyn EvalContext,
    ) -> Cow<'a, Value> {
        let [arg1, arg2] = args;
        Cow::Owned((self.f)(arg1.borrow(), arg2.borrow()))
    }
}

impl BinaryValueExpr {
    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_with_any<const STRICT: bool, F: 'static>(
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value) -> Value,
    {
        Self::create_typed::<STRICT, F>([TYPE_ANY; 2], args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_typed<const STRICT: bool, F: 'static>(
        types: [PartiqlType; 2],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value) -> Value,
    {
        type Check<const STRICT: bool> = DefaultArgChecker<STRICT, PropagateMissing<true>>;
        Self::create_checked::<{ STRICT }, Check<STRICT>, F>(types, args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_checked<const STRICT: bool, ArgC, F: 'static>(
        types: [PartiqlType; 2],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value) -> Value,
        ArgC: 'static + ArgChecker,
    {
        EvalExprWrapper::create_checked::<{ STRICT }, 2, ArgC>(Self::default(), types, args, f)
    }
}

/// An [`ExecuteEvalExpr`] over a trio of [`Value`] arguments
#[derive(Debug, Default, Copy, Clone)]
pub(crate) struct TernaryValueExpr {}

impl<F> ExecuteEvalExpr<3> for EvalExprWrapper<TernaryValueExpr, F>
where
    F: Fn(&Value, &Value, &Value) -> Value,
{
    #[inline]
    fn evaluate<'a>(
        &'a self,
        args: [Cow<'a, Value>; 3],
        _ctx: &'a dyn EvalContext,
    ) -> Cow<'a, Value> {
        let [arg1, arg2, arg3] = args;
        Cow::Owned((self.f)(arg1.borrow(), arg2.borrow(), arg3.borrow()))
    }
}

impl TernaryValueExpr {
    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_with_any<const STRICT: bool, F: 'static>(
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value, &Value) -> Value,
    {
        Self::create_typed::<STRICT, F>([TYPE_ANY; 3], args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_typed<const STRICT: bool, F: 'static>(
        types: [PartiqlType; 3],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value, &Value) -> Value,
    {
        type Check<const STRICT: bool> = DefaultArgChecker<STRICT, PropagateMissing<true>>;
        Self::create_checked::<{ STRICT }, Check<STRICT>, F>(types, args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_checked<const STRICT: bool, ArgC, F: 'static>(
        types: [PartiqlType; 3],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value, &Value) -> Value,
        ArgC: 'static + ArgChecker,
    {
        EvalExprWrapper::create_checked::<{ STRICT }, 3, ArgC>(Self::default(), types, args, f)
    }
}

/// An [`ExecuteEvalExpr`] over a quartet of [`Value`] arguments
#[derive(Debug, Default, Copy, Clone)]
pub(crate) struct QuaternaryValueExpr {}

impl<F> ExecuteEvalExpr<4> for EvalExprWrapper<QuaternaryValueExpr, F>
where
    F: Fn(&Value, &Value, &Value, &Value) -> Value,
{
    #[inline]
    fn evaluate<'a>(
        &'a self,
        args: [Cow<'a, Value>; 4],
        _ctx: &'a dyn EvalContext,
    ) -> Cow<'a, Value> {
        let [arg1, arg2, arg3, arg4] = args;
        Cow::Owned((self.f)(
            arg1.borrow(),
            arg2.borrow(),
            arg3.borrow(),
            arg4.borrow(),
        ))
    }
}

impl QuaternaryValueExpr {
    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_with_any<const STRICT: bool, F: 'static>(
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value, &Value, &Value) -> Value,
    {
        Self::create_typed::<STRICT, F>([TYPE_ANY; 4], args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_typed<const STRICT: bool, F: 'static>(
        types: [PartiqlType; 4],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value, &Value, &Value) -> Value,
    {
        type Check<const STRICT: bool> = DefaultArgChecker<STRICT, PropagateMissing<true>>;
        Self::create_checked::<{ STRICT }, Check<STRICT>, F>(types, args, f)
    }

    #[allow(dead_code)]
    #[inline]
    pub(crate) fn create_checked<const STRICT: bool, ArgC, F: 'static>(
        types: [PartiqlType; 4],
        args: Vec<Box<dyn EvalExpr>>,
        f: F,
    ) -> Result<Box<dyn EvalExpr>, BindError>
    where
        F: Fn(&Value, &Value, &Value, &Value) -> Value,
        ArgC: 'static + ArgChecker,
    {
        EvalExprWrapper::create_checked::<{ STRICT }, 4, ArgC>(Self::default(), types, args, f)
    }
}