1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
use crate::env::basic::MapBindings;
use crate::error::EvaluationError;
use crate::eval::expr::EvalExpr;
use crate::eval::{EvalContext, EvalPlan};
use itertools::Itertools;
use partiql_value::Value::{Boolean, Missing, Null};
use partiql_value::{
    bag, list, tuple, Bag, List, NullSortedValue, Tuple, Value, ValueIntoIterator,
};
use rustc_hash::FxHashMap;
use std::borrow::{Borrow, Cow};
use std::cell::RefCell;
use std::cmp::Ordering;
use std::collections::hash_map::Entry;
use std::collections::HashSet;
use std::fmt::{Debug, Formatter};

use std::rc::Rc;

#[macro_export]
macro_rules! take_input {
    ($expr:expr, $ctx:expr) => {
        match $expr {
            None => {
                $ctx.add_error(EvaluationError::IllegalState(
                    "Error in retrieving input value".to_string(),
                ));
                return Missing;
            }
            Some(val) => val,
        }
    };
}

/// Whether an [`Evaluable`] takes input from the plan graph or manages its own iteration.
pub enum EvalType {
    SelfManaged,
    GraphManaged,
}

/// `Evaluable` represents each evaluation operator in the evaluation plan as an evaluable entity.
pub trait Evaluable: Debug {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value;
    fn update_input(&mut self, input: Value, branch_num: u8, ctx: &dyn EvalContext);
    fn get_vars(&self) -> Option<&[String]> {
        None
    }
    fn eval_type(&self) -> EvalType {
        EvalType::GraphManaged
    }
}

/// Represents an evaluation `Scan` operator; `Scan` operator scans the given bindings from its
/// input and and the environment and outputs a bag of binding tuples for tuples/values matching the
/// scan `expr`, e.g. an SQL expression `table1` in SQL expression `FROM table1`.
pub(crate) struct EvalScan {
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) as_key: String,
    pub(crate) at_key: Option<String>,
    pub(crate) input: Option<Value>,

    // cached values
    attrs: Vec<String>,
}

impl Debug for EvalScan {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "SCAN ")?;
        self.expr.fmt(f)?;

        write!(f, " AS {}", self.as_key)?;

        if let Some(at_key) = &self.at_key {
            write!(f, " AT {}", at_key)?;
        }

        Ok(())
    }
}

impl EvalScan {
    pub(crate) fn new(expr: Box<dyn EvalExpr>, as_key: &str) -> Self {
        let attrs = vec![as_key.to_string()];
        EvalScan {
            expr,
            as_key: as_key.to_string(),
            at_key: None,
            input: None,
            attrs,
        }
    }
    pub(crate) fn new_with_at_key(expr: Box<dyn EvalExpr>, as_key: &str, at_key: &str) -> Self {
        let attrs = vec![as_key.to_string(), at_key.to_string()];
        EvalScan {
            expr,
            as_key: as_key.to_string(),
            at_key: Some(at_key.to_string()),
            input: None,
            attrs,
        }
    }
}

impl Evaluable for EvalScan {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = self.input.take().unwrap_or(Missing);

        let bindings = match input_value {
            Value::Bag(t) => *t,
            Value::Tuple(t) => bag![*t],
            _ => bag![tuple![]],
        };

        let mut value = bag![];
        bindings.iter().for_each(|binding| {
            let binding_tuple = binding.as_tuple_ref();
            let v = self.expr.evaluate(&binding_tuple, ctx).into_owned();
            let ordered = &v.is_ordered();
            let mut at_index_counter: i64 = 0;
            if let Some(at_key) = &self.at_key {
                for t in v.into_iter() {
                    let mut out = Tuple::from([(self.as_key.as_str(), t)]);
                    let at_id = if *ordered {
                        at_index_counter.into()
                    } else {
                        Missing
                    };
                    out.insert(at_key, at_id);
                    value.push(Value::Tuple(Box::new(out)));
                    at_index_counter += 1;
                }
            } else {
                for t in v.into_iter() {
                    let out = Tuple::from([(self.as_key.as_str(), t)]);
                    value.push(Value::Tuple(Box::new(out)));
                }
            }
        });

        Value::Bag(Box::new(value))
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }

    fn get_vars(&self) -> Option<&[String]> {
        Some(&self.attrs)
    }
}

/// Represents an evaluation `Join` operator; `Join` joins the tuples from its LHS and RHS based on a logic defined
/// by [`EvalJoinKind`]. For semantics of PartiQL joins and their distinction with SQL's see sections
/// 5.3 – 5.7 of [PartiQL Specification — August 1, 2019](https://partiql.org/assets/PartiQL-Specification.pdf).
pub(crate) struct EvalJoin {
    pub(crate) kind: EvalJoinKind,
    pub(crate) on: Option<Box<dyn EvalExpr>>,
    pub(crate) input: Option<Value>,
    pub(crate) left: Box<dyn Evaluable>,
    pub(crate) right: Box<dyn Evaluable>,
}

#[derive(Debug)]
pub(crate) enum EvalJoinKind {
    Inner,
    Left,
    Right,
    Full,
}

impl Debug for EvalJoin {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:#?} JOIN", &self.kind)?;
        if let Some(on) = &self.on {
            write!(f, "ON ")?;
            on.fmt(f)?;
        }
        Ok(())
    }
}

impl EvalJoin {
    pub(crate) fn new(
        kind: EvalJoinKind,
        left: Box<dyn Evaluable>,
        right: Box<dyn Evaluable>,
        on: Option<Box<dyn EvalExpr>>,
    ) -> Self {
        EvalJoin {
            kind,
            on,
            input: None,
            left,
            right,
        }
    }
}

impl Evaluable for EvalJoin {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        /// Creates a `Tuple` with attributes `attrs`, each with value `Null`
        #[inline]
        fn tuple_with_null_vals<I, S>(attrs: I) -> Tuple
        where
            S: Into<String>,
            I: IntoIterator<Item = S>,
        {
            attrs.into_iter().map(|k| (k.into(), Null)).collect()
        }

        let mut output_bag = bag![];
        let input_env = self.input.take().unwrap_or_else(|| Value::from(tuple![]));
        self.left.update_input(input_env.clone(), 0, ctx);
        let lhs_values = self.left.evaluate(ctx);
        let left_bindings = match lhs_values {
            Value::Bag(t) => *t,
            _ => {
                ctx.add_error(EvaluationError::IllegalState(
                    "Left side of FROM source should result in a bag of bindings".to_string(),
                ));
                return Missing;
            }
        };

        // Current implementations follow pseudocode defined in section 5.6 of spec
        // https://partiql.org/assets/PartiQL-Specification.pdf#subsection.5.6
        match self.kind {
            EvalJoinKind::Inner => {
                // for each binding b_l in eval(p0, p, l)
                left_bindings.iter().for_each(|b_l| {
                    let env_b_l = input_env
                        .as_tuple_ref()
                        .as_ref()
                        .tuple_concat(b_l.as_tuple_ref().borrow());
                    self.right.update_input(Value::from(env_b_l), 0, ctx);
                    let rhs_values = self.right.evaluate(ctx);

                    let right_bindings = match rhs_values {
                        Value::Bag(t) => *t,
                        _ => bag![tuple![]],
                    };

                    // for each binding b_r in eval (p0, (p || b_l), r)
                    for b_r in right_bindings.iter() {
                        match &self.on {
                            None => {
                                let b_l_b_r = b_l
                                    .as_tuple_ref()
                                    .as_ref()
                                    .tuple_concat(b_r.as_tuple_ref().borrow());
                                output_bag.push(Value::from(b_l_b_r));
                            }
                            // if eval(p0, (p || b_l || b_r), c) is true, add b_l || b_r to output bag
                            Some(condition) => {
                                let b_l_b_r = b_l
                                    .as_tuple_ref()
                                    .as_ref()
                                    .tuple_concat(b_r.as_tuple_ref().borrow());
                                let env_b_l_b_r =
                                    &input_env.as_tuple_ref().as_ref().tuple_concat(&b_l_b_r);
                                let cond = condition.evaluate(env_b_l_b_r, ctx);
                                if cond.as_ref() == &Value::Boolean(true) {
                                    output_bag.push(Value::Tuple(Box::new(b_l_b_r)));
                                }
                            }
                        }
                    }
                });
            }
            EvalJoinKind::Left => {
                // for each binding b_l in eval(p0, p, l)
                left_bindings.iter().for_each(|b_l| {
                    // define empty bag q_r
                    let mut output_bag_left = bag![];
                    let env_b_l = input_env
                        .as_tuple_ref()
                        .as_ref()
                        .tuple_concat(b_l.as_tuple_ref().borrow());
                    self.right.update_input(Value::from(env_b_l), 0, ctx);
                    let rhs_values = self.right.evaluate(ctx);

                    let right_bindings = match rhs_values {
                        Value::Bag(t) => *t,
                        _ => bag![tuple![]],
                    };

                    // for each binding b_r in eval (p0, (p || b_l), r)
                    for b_r in right_bindings.iter() {
                        match &self.on {
                            None => {
                                let b_l_b_r = b_l
                                    .as_tuple_ref()
                                    .as_ref()
                                    .tuple_concat(b_r.as_tuple_ref().borrow());
                                output_bag_left.push(Value::from(b_l_b_r));
                            }
                            // if eval(p0, (p || b_l || b_r), c) is true, add b_l || b_r to q_r
                            Some(condition) => {
                                let b_l_b_r = b_l
                                    .as_tuple_ref()
                                    .as_ref()
                                    .tuple_concat(b_r.as_tuple_ref().borrow());
                                let env_b_l_b_r =
                                    &input_env.as_tuple_ref().as_ref().tuple_concat(&b_l_b_r);
                                let cond = condition.evaluate(env_b_l_b_r, ctx);
                                if cond.as_ref() == &Value::Boolean(true) {
                                    output_bag_left.push(Value::Tuple(Box::new(b_l_b_r)));
                                }
                            }
                        }
                    }

                    // if q_r is the empty bag
                    if output_bag_left.is_empty() {
                        let attrs = self.right.get_vars().unwrap_or(&[]);
                        let new_binding = b_l
                            .as_tuple_ref()
                            .as_ref()
                            .tuple_concat(&tuple_with_null_vals(attrs));
                        // add b_l || <v_1_r: NULL, ..., v_n_r: NULL> to output bag
                        output_bag.push(Value::from(new_binding));
                    } else {
                        // otherwise for each binding b_r in q_r, add b_l || b_r to output bag
                        for elem in output_bag_left.into_iter() {
                            output_bag.push(elem)
                        }
                    }
                });
            }
            EvalJoinKind::Full | EvalJoinKind::Right => {
                ctx.add_error(EvaluationError::NotYetImplemented(
                    "FULL and RIGHT JOIN".to_string(),
                ));
                return Missing;
            }
        };
        Value::Bag(Box::new(output_bag))
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }

    fn eval_type(&self) -> EvalType {
        EvalType::SelfManaged
    }
}

/// An SQL aggregation function call that has been rewritten to be evaluated with the `GROUP BY`
/// clause. The `[name]` is the string (generated in AST lowering step) that replaces the
/// aggregation call expression. This name will be used as the field in the binding tuple output
/// by `GROUP BY`. `[expr]` corresponds to the expression within the aggregation function. And
/// `[func]` corresponds to the aggregation function that's being called (e.g. sum, count, avg).
///
/// For example, `SELECT a AS a, SUM(b) AS b FROM t GROUP BY a` is rewritten to the following form
///              `SELECT a AS a, $__agg_1 AS b FROM t GROUP BY a`
/// In the above example, `name` corresponds to '$__agg_1', `expr` refers to the expression within
/// the aggregation function, `b`, and `func` corresponds to the sum aggregation function,
/// `[AggSum]`.
#[derive(Debug)]
pub(crate) struct AggregateExpression {
    pub(crate) name: String,
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) func: Box<dyn AggregateFunction>,
}

impl AggregateFunction for AggregateExpression {
    #[inline]
    fn next_distinct(
        &self,
        input_value: &Value,
        state: &mut Option<Value>,
        seen: &mut FxHashMap<Value, ()>,
    ) {
        if input_value.is_present() {
            self.func.next_distinct(input_value, state, seen);
        }
    }

    #[inline]
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>) {
        if input_value.is_present() {
            self.func.next_value(input_value, state);
        }
    }

    #[inline]
    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        self.func.finalize(state)
    }
}

/// Represents an SQL aggregation function computed on a collection of input values.
pub trait AggregateFunction: Debug {
    #[inline]
    fn next_distinct(
        &self,
        input_value: &Value,
        state: &mut Option<Value>,
        seen: &mut FxHashMap<Value, ()>,
    ) {
        match seen.entry(input_value.clone()) {
            Entry::Occupied(_) => {}
            Entry::Vacant(v) => {
                v.insert(());
                self.next_value(input_value, state);
            }
        }
    }
    /// Provides the next value for the given `group`.
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>);
    /// Returns the result of the aggregation function for a given `group`.
    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError>;
}

/// Represents SQL's `AVG` aggregation function
#[derive(Debug)]
pub(crate) struct Avg {}

impl AggregateFunction for Avg {
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>) {
        match state {
            None => *state = Some(Value::from(list![Value::from(1), input_value.clone()])),
            Some(Value::List(list)) => {
                if let Some(count) = list.get_mut(0) {
                    *count += &Value::from(1);
                }
                if let Some(sum) = list.get_mut(1) {
                    *sum += input_value;
                }
            }
            _ => unreachable!(),
        };
    }

    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        match state {
            None => Ok(Null),
            Some(Value::List(list)) => {
                let vals = list.to_vec();
                if let [count, sum] = &vals[..] {
                    if let Value::Integer(n) = sum {
                        // Avg does not do integer division; convert to decimal
                        let sum = Value::from(rust_decimal::Decimal::from(*n));
                        Ok(&sum / count)
                    } else {
                        Ok(sum / count)
                    }
                } else {
                    Err(EvaluationError::IllegalState(
                        "Bad finalize state for Avg".to_string(),
                    ))
                }
            }
            _ => unreachable!(),
        }
    }
}

/// Represents SQL's `COUNT` aggregation function
#[derive(Debug)]
pub(crate) struct Count {}

impl AggregateFunction for Count {
    fn next_value(&self, _: &Value, state: &mut Option<Value>) {
        match state {
            None => *state = Some(Value::from(1)),
            Some(Value::Integer(i)) => {
                *i += 1;
            }
            _ => unreachable!(),
        };
    }

    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        Ok(state.unwrap_or_else(|| Value::from(0)))
    }
}

/// Represents SQL's `MAX` aggregation function
#[derive(Debug)]
pub(crate) struct Max {}

impl AggregateFunction for Max {
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>) {
        match state {
            None => *state = Some(input_value.clone()),
            Some(max) => {
                if &*max < input_value {
                    *max = input_value.clone();
                }
            }
        };
    }

    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        Ok(state.unwrap_or_else(|| Null))
    }
}

/// Represents SQL's `MIN` aggregation function
#[derive(Debug)]
pub(crate) struct Min {}

impl AggregateFunction for Min {
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>) {
        match state {
            None => *state = Some(input_value.clone()),
            Some(min) => {
                if &*min > input_value {
                    *min = input_value.clone();
                }
            }
        };
    }

    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        Ok(state.unwrap_or_else(|| Null))
    }
}

/// Represents SQL's `SUM` aggregation function
#[derive(Debug)]
pub(crate) struct Sum {}

impl AggregateFunction for Sum {
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>) {
        match state {
            None => *state = Some(input_value.clone()),
            Some(ref mut sum) => *sum += input_value,
        };
    }

    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        Ok(state.unwrap_or_else(|| Null))
    }
}

/// Represents SQL's `ANY`/`SOME` aggregation function
#[derive(Debug)]
pub(crate) struct Any {}

impl AggregateFunction for Any {
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>) {
        match state {
            None => {
                *state = Some(match input_value {
                    Boolean(b) => Value::Boolean(*b),
                    _ => Missing,
                })
            }
            Some(ref mut acc) => {
                *acc = match (&acc, input_value) {
                    (Boolean(acc), Boolean(new)) => Boolean(*acc || *new),
                    _ => Missing,
                }
            }
        };
    }

    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        Ok(state.unwrap_or_else(|| Null))
    }
}

/// Represents SQL's `EVERY` aggregation function
#[derive(Debug)]
pub(crate) struct Every {}

impl AggregateFunction for Every {
    fn next_value(&self, input_value: &Value, state: &mut Option<Value>) {
        match state {
            None => {
                *state = Some(match input_value {
                    Boolean(b) => Value::Boolean(*b),
                    _ => Missing,
                })
            }
            Some(ref mut acc) => {
                *acc = match (&acc, input_value) {
                    (Boolean(acc), Boolean(new)) => Boolean(*acc && *new),
                    _ => Missing,
                }
            }
        };
    }

    fn finalize(&self, state: Option<Value>) -> Result<Value, EvaluationError> {
        Ok(state.unwrap_or_else(|| Null))
    }
}

/// Represents an evaluation `GROUP BY` operator. For `GROUP BY` operational semantics, see section
/// `11` of
/// [PartiQL Specification — August 1, 2019](https://partiql.org/assets/PartiQL-Specification.pdf).
/// `aggregate_exprs` represents the set of aggregate expressions to compute.
#[derive(Debug)]
pub(crate) struct EvalGroupBy {
    pub(crate) strategy: EvalGroupingStrategy,
    pub(crate) group: Vec<Box<dyn EvalExpr>>,
    pub(crate) aliases: Vec<String>,
    pub(crate) aggs: Vec<AggregateExpression>,
    pub(crate) distinct_aggs: Vec<AggregateExpression>,
    pub(crate) group_as_alias: Option<String>,
    pub(crate) input: Option<Value>,
}

type GroupKey = Vec<Value>;
type AggState = Vec<Option<Value>>;
type DAggState = Vec<(Option<Value>, FxHashMap<Value, ()>)>;
#[derive(Clone)]
struct CombinedState(AggState, DAggState, Option<Vec<Value>>);

/// Represents the grouping qualifier: ALL or PARTIAL.
#[derive(Debug)]
pub(crate) enum EvalGroupingStrategy {
    GroupFull,
    GroupPartial,
}

impl EvalGroupBy {
    #[inline]
    pub(crate) fn new(
        strategy: EvalGroupingStrategy,
        group: Vec<Box<dyn EvalExpr>>,
        aliases: Vec<String>,
        aggs: Vec<AggregateExpression>,
        distinct_aggs: Vec<AggregateExpression>,
        group_as_alias: Option<String>,
    ) -> Self {
        Self {
            strategy,
            group,
            aliases,
            aggs,
            distinct_aggs,
            group_as_alias,
            input: None,
        }
    }

    #[inline]
    fn group_key(&self, bindings: &Tuple, ctx: &dyn EvalContext) -> GroupKey {
        self.group
            .iter()
            .map(|expr| match expr.evaluate(bindings, ctx).as_ref() {
                Missing => Value::Null,
                val => val.clone(),
            })
            .collect()
    }
}

impl Evaluable for EvalGroupBy {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let group_as_alias = &self.group_as_alias;
        let input_value = take_input!(self.input.take(), ctx);

        match self.strategy {
            EvalGroupingStrategy::GroupPartial => {
                ctx.add_error(EvaluationError::NotYetImplemented(
                    "GROUP PARTIAL".to_string(),
                ));
                Missing
            }
            EvalGroupingStrategy::GroupFull => {
                let mut grouped: FxHashMap<GroupKey, CombinedState> = FxHashMap::default();
                let state = std::iter::repeat(None).take(self.aggs.len()).collect_vec();
                let distinct_state = std::iter::repeat_with(|| (None, FxHashMap::default()))
                    .take(self.distinct_aggs.len())
                    .collect_vec();
                let group_as = group_as_alias.as_ref().map(|_| vec![]);

                let combined = CombinedState(state, distinct_state, group_as);

                for v in input_value.into_iter() {
                    let v_as_tuple = v.coerce_into_tuple();
                    let group_key = self.group_key(&v_as_tuple, ctx);
                    let CombinedState(state, distinct_state, group_as) =
                        grouped.entry(group_key).or_insert_with(|| combined.clone());

                    // Compute next aggregation result for each of the aggregation expressions
                    for (agg_expr, state) in self.aggs.iter().zip(state.iter_mut()) {
                        let evaluated = agg_expr.expr.evaluate(&v_as_tuple, ctx);
                        agg_expr.next_value(evaluated.as_ref(), state);
                    }

                    // Compute next aggregation result for each of the distinct aggregation expressions
                    for (distinct_expr, (state, seen)) in
                        self.distinct_aggs.iter().zip(distinct_state.iter_mut())
                    {
                        let evaluated = distinct_expr.expr.evaluate(&v_as_tuple, ctx);
                        distinct_expr.next_distinct(evaluated.as_ref(), state, seen);
                    }

                    // Add tuple to `GROUP AS` if applicable
                    if let Some(ref mut tuples) = group_as {
                        tuples.push(Value::from(v_as_tuple));
                    }
                }

                let vals = grouped
                    .into_iter()
                    .map(|(group_key, state)| {
                        let CombinedState(agg_state, distinct_state, group_as) = state;
                        let group = self.aliases.iter().cloned().zip(group_key);

                        // finalize all aggregates
                        let aggs_with_state = self.aggs.iter().zip(agg_state);
                        let daggs_with_state = self
                            .distinct_aggs
                            .iter()
                            .zip(distinct_state.into_iter().map(|(state, _)| state));
                        let agg_data = aggs_with_state.chain(daggs_with_state).map(
                            |(aggregate_expr, state)| {
                                let val = match aggregate_expr.finalize(state) {
                                    Ok(agg_result) => agg_result,
                                    Err(err) => {
                                        ctx.add_error(err);
                                        Missing
                                    }
                                };

                                (aggregate_expr.name.to_string(), val)
                            },
                        );

                        let mut tuple = Tuple::from_iter(group.chain(agg_data));

                        // insert `GROUP AS` if applicable
                        if let Some(tuples) = group_as {
                            tuple.insert(
                                group_as_alias.as_ref().unwrap(),
                                Value::from(Bag::from(tuples)),
                            );
                        }

                        Value::from(tuple)
                    })
                    .collect_vec();

                Value::from(Bag::from(vals))
            }
        }
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `Pivot` operator; the `Pivot` enables turning a collection into a
/// tuple. For `Pivot` operational semantics, see section `6.2` of
/// [PartiQL Specification — August 1, 2019](https://partiql.org/assets/PartiQL-Specification.pdf).
#[derive(Debug)]
pub(crate) struct EvalPivot {
    pub(crate) input: Option<Value>,
    pub(crate) key: Box<dyn EvalExpr>,
    pub(crate) value: Box<dyn EvalExpr>,
}

impl EvalPivot {
    pub(crate) fn new(key: Box<dyn EvalExpr>, value: Box<dyn EvalExpr>) -> Self {
        EvalPivot {
            input: None,
            key,
            value,
        }
    }
}

impl Evaluable for EvalPivot {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let tuple: Tuple = input_value
            .into_iter()
            .filter_map(|binding| {
                let binding = binding.coerce_into_tuple();
                let key = self.key.evaluate(&binding, ctx);
                if let Value::String(s) = key.as_ref() {
                    let value = self.value.evaluate(&binding, ctx);
                    Some((s.to_string(), value.into_owned()))
                } else {
                    None
                }
            })
            .collect();
        Value::from(tuple)
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `Unpivot` operator; the `Unpivot` enables ranging over the
/// attribute-value pairs of a tuple. For `Unpivot` operational semantics, see section `5.2` of
/// [PartiQL Specification — August 1, 2019](https://partiql.org/assets/PartiQL-Specification.pdf).
#[derive(Debug)]
pub(crate) struct EvalUnpivot {
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) as_key: String,
    pub(crate) at_key: Option<String>,
    pub(crate) input: Option<Value>,

    // cached values
    attrs: Vec<String>,
}

impl EvalUnpivot {
    pub(crate) fn new(expr: Box<dyn EvalExpr>, as_key: &str, at_key: Option<String>) -> Self {
        let attrs = if let Some(at_key) = &at_key {
            vec![as_key.to_string(), at_key.clone()]
        } else {
            vec![as_key.to_string()]
        };

        EvalUnpivot {
            expr,
            as_key: as_key.to_string(),
            at_key,
            input: None,
            attrs,
        }
    }
}

impl Evaluable for EvalUnpivot {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let tuple = match self.expr.evaluate(&Tuple::new(), ctx).into_owned() {
            Value::Tuple(tuple) => *tuple,
            other => other.coerce_into_tuple(),
        };

        let as_key = self.as_key.as_str();
        let pairs = tuple;
        let unpivoted = if let Some(at_key) = &self.at_key {
            pairs
                .map(|(k, v)| Tuple::from([(as_key, v), (at_key.as_str(), k.into())]))
                .collect::<Bag>()
        } else {
            pairs
                .map(|(_, v)| Tuple::from([(as_key, v)]))
                .collect::<Bag>()
        };
        Value::from(unpivoted)
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }

    fn get_vars(&self) -> Option<&[String]> {
        Some(&self.attrs)
    }
}

/// Represents an evaluation `Filter` operator; for an input bag of binding tuples the `Filter`
/// operator filters out the binding tuples that does not meet the condition expressed as `expr`,
/// e.g.`a > 2` in `WHERE a > 2` expression.
#[derive(Debug)]
pub(crate) struct EvalFilter {
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) input: Option<Value>,
}

impl EvalFilter {
    pub(crate) fn new(expr: Box<dyn EvalExpr>) -> Self {
        EvalFilter { expr, input: None }
    }

    #[inline]
    fn eval_filter(&self, bindings: &Tuple, ctx: &dyn EvalContext) -> bool {
        let result = self.expr.evaluate(bindings, ctx);
        match result.as_ref() {
            Boolean(bool_val) => *bool_val,
            // Alike SQL, when the expression of the WHERE clause expression evaluates to
            // absent value or a value that is not a Boolean, PartiQL eliminates the corresponding
            // binding. PartiQL Specification August 1, 2019 Draft, Section 8. `WHERE clause`
            _ => false,
        }
    }
}

impl Evaluable for EvalFilter {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let filtered = input_value
            .into_iter()
            .map(Value::coerce_into_tuple)
            .filter_map(|v| self.eval_filter(&v, ctx).then_some(v));
        Value::from(filtered.collect::<Bag>())
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `Having` operator; for an input bag of binding tuples the `Having`
/// operator filters out the binding tuples that does not meet the condition expressed as `expr`,
/// e.g. `a = 10` in `HAVING a = 10` expression.
#[derive(Debug)]
pub(crate) struct EvalHaving {
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) input: Option<Value>,
}

impl EvalHaving {
    pub(crate) fn new(expr: Box<dyn EvalExpr>) -> Self {
        EvalHaving { expr, input: None }
    }

    #[inline]
    fn eval_having(&self, bindings: &Tuple, ctx: &dyn EvalContext) -> bool {
        let result = self.expr.evaluate(bindings, ctx);
        match result.as_ref() {
            Boolean(bool_val) => *bool_val,
            // Alike SQL, when the expression of the HAVING clause expression evaluates to
            // absent value or a value that is not a Boolean, PartiQL eliminates the corresponding
            // binding. PartiQL Specification August 1, 2019 Draft, Section 11.1.
            // > HAVING behaves identical to a WHERE, once groups are already formulated earlier
            // See Section 8 on WHERE semantics
            _ => false,
        }
    }
}

impl Evaluable for EvalHaving {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let filtered = input_value
            .into_iter()
            .map(Value::coerce_into_tuple)
            .filter_map(|v| self.eval_having(&v, ctx).then_some(v));
        Value::from(filtered.collect::<Bag>())
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

#[derive(Debug)]
pub(crate) struct EvalOrderBySortCondition {
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) spec: EvalOrderBySortSpec,
}

#[derive(Debug)]
pub(crate) enum EvalOrderBySortSpec {
    AscNullsFirst,
    AscNullsLast,
    DescNullsFirst,
    DescNullsLast,
}

/// Represents an evaluation `Order By` operator; e.g. `ORDER BY a DESC NULLS LAST` in `SELECT a FROM t ORDER BY a DESC NULLS LAST`.
#[derive(Debug)]
pub(crate) struct EvalOrderBy {
    pub(crate) cmp: Vec<EvalOrderBySortCondition>,
    pub(crate) input: Option<Value>,
}

impl EvalOrderBy {
    #[inline]
    fn compare(&self, l: &Value, r: &Value, ctx: &dyn EvalContext) -> Ordering {
        let l = l.as_tuple_ref();
        let r = r.as_tuple_ref();
        self.cmp
            .iter()
            .map(|spec| {
                let l = spec.expr.evaluate(&l, ctx);
                let r = spec.expr.evaluate(&r, ctx);

                match spec.spec {
                    EvalOrderBySortSpec::AscNullsFirst => {
                        let wrap = NullSortedValue::<true, Value>;
                        let (l, r) = (wrap(l.as_ref()), wrap(r.as_ref()));
                        l.cmp(&r)
                    }
                    EvalOrderBySortSpec::AscNullsLast => {
                        let wrap = NullSortedValue::<false, Value>;
                        let (l, r) = (wrap(l.as_ref()), wrap(r.as_ref()));
                        l.cmp(&r)
                    }
                    EvalOrderBySortSpec::DescNullsFirst => {
                        let wrap = NullSortedValue::<false, Value>;
                        let (l, r) = (wrap(l.as_ref()), wrap(r.as_ref()));
                        r.cmp(&l)
                    }
                    EvalOrderBySortSpec::DescNullsLast => {
                        let wrap = NullSortedValue::<true, Value>;
                        let (l, r) = (wrap(l.as_ref()), wrap(r.as_ref()));
                        r.cmp(&l)
                    }
                }
            })
            .find_or_last(|o| o != &Ordering::Equal)
            .unwrap_or(Ordering::Equal)
    }
}

impl Evaluable for EvalOrderBy {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let mut values = input_value.into_iter().collect_vec();
        values.sort_by(|l, r| self.compare(l, r, ctx));
        Value::from(List::from(values))
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `LIMIT` and/or `OFFSET` operator.
#[derive(Debug)]
pub(crate) struct EvalLimitOffset {
    pub(crate) limit: Option<Box<dyn EvalExpr>>,
    pub(crate) offset: Option<Box<dyn EvalExpr>>,
    pub(crate) input: Option<Value>,
}

impl Evaluable for EvalLimitOffset {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let empty_bindings = Tuple::new();

        let offset = match &self.offset {
            None => 0,
            Some(expr) => match expr.evaluate(&empty_bindings, ctx).as_ref() {
                Value::Integer(i) => {
                    if *i >= 0 {
                        *i as usize
                    } else {
                        0
                    }
                }
                _ => 0,
            },
        };

        let limit = match &self.limit {
            None => None,
            Some(expr) => match expr.evaluate(&empty_bindings, ctx).as_ref() {
                Value::Integer(i) => {
                    if *i >= 0 {
                        Some(*i as usize)
                    } else {
                        None
                    }
                }
                _ => None,
            },
        };

        let ordered = input_value.is_ordered();
        fn collect(values: impl Iterator<Item = Value>, ordered: bool) -> Value {
            match ordered {
                true => Value::from(values.collect::<List>()),
                false => Value::from(values.collect::<Bag>()),
            }
        }

        let offsetted = input_value.into_iter().skip(offset);
        match limit {
            Some(n) => collect(offsetted.take(n), ordered),
            None => collect(offsetted, ordered),
        }
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `SelectValue` operator; `SelectValue` implements PartiQL Core's
/// `SELECT VALUE` clause semantics. For `SelectValue` operational semantics, see section `6.1` of
/// [PartiQL Specification — August 1, 2019](https://partiql.org/assets/PartiQL-Specification.pdf).
#[derive(Debug)]
pub(crate) struct EvalSelectValue {
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) input: Option<Value>,
}

impl EvalSelectValue {
    pub(crate) fn new(expr: Box<dyn EvalExpr>) -> Self {
        EvalSelectValue { expr, input: None }
    }
}

impl Evaluable for EvalSelectValue {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let ordered = input_value.is_ordered();

        let values = input_value.into_iter().map(|v| {
            let v_as_tuple = v.coerce_into_tuple();
            self.expr.evaluate(&v_as_tuple, ctx).into_owned()
        });

        match ordered {
            true => Value::from(values.collect::<List>()),
            false => Value::from(values.collect::<Bag>()),
        }
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `Project` operator; for a given bag of input binding tuples as input
/// the `Project` selects attributes as specified by expressions in `exprs`. For `Project`
/// operational semantics, see section `6` of
/// [PartiQL Specification — August 1, 2019](https://partiql.org/assets/PartiQL-Specification.pdf).
pub(crate) struct EvalSelect {
    pub(crate) exprs: Vec<(String, Box<dyn EvalExpr>)>,
    pub(crate) input: Option<Value>,
}

impl EvalSelect {
    pub(crate) fn new(exprs: Vec<(String, Box<dyn EvalExpr>)>) -> Self {
        EvalSelect { exprs, input: None }
    }
}

impl Debug for EvalSelect {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "SELECT ")?;
        let mut sep = "";
        for (alias, expr) in &self.exprs {
            write!(f, "{sep}")?;
            expr.fmt(f)?;
            write!(f, " AS {alias}")?;
            sep = ", ";
        }

        Ok(())
    }
}

impl Evaluable for EvalSelect {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let ordered = input_value.is_ordered();

        let values = input_value.into_iter().map(|v| {
            let v_as_tuple = v.coerce_into_tuple();

            let tuple_pairs = self.exprs.iter().filter_map(|(alias, expr)| {
                let evaluated_val = expr.evaluate(&v_as_tuple, ctx);
                match evaluated_val.as_ref() {
                    Missing => None,
                    _ => Some((alias.as_str(), evaluated_val.into_owned())),
                }
            });

            tuple_pairs.collect::<Tuple>()
        });

        match ordered {
            true => Value::from(values.collect::<List>()),
            false => Value::from(values.collect::<Bag>()),
        }
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `ProjectAll` operator; `ProjectAll` implements SQL's `SELECT *`
/// semantics.
#[derive(Debug, Default)]
pub(crate) struct EvalSelectAll {
    pub(crate) input: Option<Value>,
}

impl EvalSelectAll {
    pub(crate) fn new() -> Self {
        Self::default()
    }
}

impl Evaluable for EvalSelectAll {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);

        let ordered = input_value.is_ordered();

        let values = input_value.into_iter().map(|val| {
            val.coerce_into_tuple()
                .into_values()
                .flat_map(|v| v.coerce_into_tuple().into_pairs())
                .collect::<Tuple>()
        });

        match ordered {
            true => Value::from(values.collect::<List>()),
            false => Value::from(values.collect::<Bag>()),
        }
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an evaluation `ExprQuery` operator; in PartiQL as opposed to SQL, the following
/// expression by its own is valid: `2 * 2`. Considering this, evaluation plan designates an operator
/// for evaluating such stand-alone expressions.
#[derive(Debug)]
pub(crate) struct EvalExprQuery {
    pub(crate) expr: Box<dyn EvalExpr>,
    pub(crate) input: Option<Value>,
}

impl EvalExprQuery {
    pub(crate) fn new(expr: Box<dyn EvalExpr>) -> Self {
        EvalExprQuery { expr, input: None }
    }
}

impl Evaluable for EvalExprQuery {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = self.input.take().unwrap_or(Value::Null).coerce_into_tuple();

        self.expr.evaluate(&input_value, ctx).into_owned()
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an SQL `DISTINCT` operator, e.g. in `SELECT DISTINCT a FROM t`.
#[derive(Debug, Default)]
pub(crate) struct EvalDistinct {
    pub(crate) input: Option<Value>,
}

impl EvalDistinct {
    pub(crate) fn new() -> Self {
        Self::default()
    }
}

impl Evaluable for EvalDistinct {
    fn evaluate(&mut self, ctx: &dyn EvalContext) -> Value {
        let input_value = take_input!(self.input.take(), ctx);
        let ordered = input_value.is_ordered();

        let values = input_value.into_iter().unique();
        match ordered {
            true => Value::from(values.collect::<List>()),
            false => Value::from(values.collect::<Bag>()),
        }
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

/// Represents an operator that captures the output of a (sub)query in the plan.
pub(crate) struct EvalSink {
    pub(crate) input: Option<Value>,
}

impl Evaluable for EvalSink {
    fn evaluate(&mut self, _ctx: &dyn EvalContext) -> Value {
        self.input.take().unwrap_or_else(|| Missing)
    }

    fn update_input(&mut self, input: Value, _branch_num: u8, _ctx: &dyn EvalContext) {
        self.input = Some(input);
    }
}

impl Debug for EvalSink {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "SINK")
    }
}

/// Represents an evaluation operator for sub-queries, e.g. `SELECT a FROM b` in
/// `SELECT b.c, (SELECT a FROM b) FROM books AS b`.
#[derive(Debug)]
pub(crate) struct EvalSubQueryExpr {
    pub(crate) plan: Rc<RefCell<EvalPlan>>,
}

impl EvalSubQueryExpr {
    pub(crate) fn new(plan: EvalPlan) -> Self {
        EvalSubQueryExpr {
            plan: Rc::new(RefCell::new(plan)),
        }
    }
}

impl EvalExpr for EvalSubQueryExpr {
    fn evaluate<'a>(&'a self, bindings: &'a Tuple, _ctx: &'a dyn EvalContext) -> Cow<'a, Value> {
        let value = if let Ok(evaluated) = self
            .plan
            .borrow_mut()
            .execute_mut(MapBindings::from(bindings))
        {
            evaluated.result
        } else {
            Missing
        };
        Cow::Owned(value)
    }
}

///
/// Coercion function F for bag operators described in RFC-0007
/// - F(absent_value) -> << >>
/// - F(scalar_value) -> << scalar_value >> # singleton bag
/// - F(tuple_value)  -> << tuple_value >>  # singleton bag, see future extensions
/// - F(array_value)  -> bag_value          # discard ordering
/// - F(bag_value)    -> bag_value          # identity
///
#[inline]
fn bagop_iter(v: Value) -> ValueIntoIterator {
    match v {
        Value::Null | Value::Missing => ValueIntoIterator::Single(None),
        other => other.into_iter(),
    }
}

/// Represents the `OUTER UNION` bag operator.
#[derive(Debug, PartialEq)]
pub(crate) struct EvalOuterUnion {
    pub(crate) setq: SetQuantifier,
    pub(crate) l_input: Option<Value>,
    pub(crate) r_input: Option<Value>,
}

impl EvalOuterUnion {
    pub(crate) fn new(setq: SetQuantifier) -> Self {
        EvalOuterUnion {
            setq,
            l_input: None,
            r_input: None,
        }
    }
}

impl Evaluable for EvalOuterUnion {
    fn evaluate(&mut self, _ctx: &dyn EvalContext) -> Value {
        let lhs = bagop_iter(self.l_input.take().unwrap_or(Missing));
        let rhs = bagop_iter(self.r_input.take().unwrap_or(Missing));
        let chained = lhs.chain(rhs);
        let vals = match self.setq {
            SetQuantifier::All => chained.collect_vec(),
            SetQuantifier::Distinct => chained.unique().collect_vec(),
        };
        Value::from(Bag::from(vals))
    }

    fn update_input(&mut self, input: Value, branch_num: u8, ctx: &dyn EvalContext) {
        match branch_num {
            0 => self.l_input = Some(input),
            1 => self.r_input = Some(input),
            _ => ctx.add_error(EvaluationError::IllegalState(
                "Invalid branch number".to_string(),
            )),
        }
    }
}

/// Represents the `OUTER INTERSECT` bag operator.
#[derive(Debug, PartialEq)]
pub(crate) struct EvalOuterIntersect {
    pub(crate) setq: SetQuantifier,
    pub(crate) l_input: Option<Value>,
    pub(crate) r_input: Option<Value>,
}

impl EvalOuterIntersect {
    pub(crate) fn new(setq: SetQuantifier) -> Self {
        EvalOuterIntersect {
            setq,
            l_input: None,
            r_input: None,
        }
    }
}

impl Evaluable for EvalOuterIntersect {
    fn evaluate(&mut self, _ctx: &dyn EvalContext) -> Value {
        let lhs = bagop_iter(self.l_input.take().unwrap_or(Missing));
        let rhs = bagop_iter(self.r_input.take().unwrap_or(Missing));

        let bag: Bag = match self.setq {
            SetQuantifier::All => {
                let mut lhs = lhs.counts();
                Bag::from_iter(rhs.filter(|elem| match lhs.get_mut(elem) {
                    Some(count) if *count > 0 => {
                        *count -= 1;
                        true
                    }
                    _ => false,
                }))
            }
            SetQuantifier::Distinct => {
                let lhs: HashSet<Value> = lhs.collect();
                Bag::from_iter(
                    rhs.filter(|elem| lhs.contains(elem))
                        .collect::<HashSet<_>>(),
                )
            }
        };
        Value::from(bag)
    }

    fn update_input(&mut self, input: Value, branch_num: u8, ctx: &dyn EvalContext) {
        match branch_num {
            0 => self.l_input = Some(input),
            1 => self.r_input = Some(input),
            _ => ctx.add_error(EvaluationError::IllegalState(
                "Invalid branch number".to_string(),
            )),
        }
    }
}

/// Represents the `OUTER EXCEPT` bag operator.
#[derive(Debug, PartialEq)]
pub(crate) struct EvalOuterExcept {
    pub(crate) setq: SetQuantifier,
    pub(crate) l_input: Option<Value>,
    pub(crate) r_input: Option<Value>,
}

impl EvalOuterExcept {
    pub(crate) fn new(setq: SetQuantifier) -> Self {
        EvalOuterExcept {
            setq,
            l_input: None,
            r_input: None,
        }
    }
}

impl Evaluable for EvalOuterExcept {
    fn evaluate(&mut self, _ctx: &dyn EvalContext) -> Value {
        let lhs = bagop_iter(self.l_input.take().unwrap_or(Missing));
        let rhs = bagop_iter(self.r_input.take().unwrap_or(Missing));

        let mut exclude = rhs.counts();
        let excepted = lhs.filter(|elem| match exclude.get_mut(elem) {
            Some(count) if *count > 0 => {
                *count -= 1;
                false
            }
            _ => true,
        });
        let vals = match self.setq {
            SetQuantifier::All => excepted.collect_vec(),
            SetQuantifier::Distinct => excepted.unique().collect_vec(),
        };
        Value::from(Bag::from(vals))
    }

    fn update_input(&mut self, input: Value, branch_num: u8, ctx: &dyn EvalContext) {
        match branch_num {
            0 => self.l_input = Some(input),
            1 => self.r_input = Some(input),
            _ => ctx.add_error(EvaluationError::IllegalState(
                "Invalid branch number".to_string(),
            )),
        }
    }
}

/// Indicates if a set should be reduced to its distinct elements or not.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub(crate) enum SetQuantifier {
    All,
    Distinct,
}